• Plywood formwork system for formwork and scaffolding System 1
  • Plywood formwork system for formwork and scaffolding System 2
Plywood formwork system for formwork and scaffolding

Plywood formwork system for formwork and scaffolding

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
50 m²
Supply Capability:
1000 m²/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Plywood --- make perfect concrete surface


WISA-Form Birch is a coated special plywood using in the formwork systems where high

requirements are set on the concrete surface and the times of reuses.


With CNBM timber beam & WISA plywood, the formwork is low weight but high load capacity, it is

widely used in construction.


Characteristics:

◆ Component with high standardization.

◆ Assembling in site, flexible application.

◆ Light weight, easy transportation and storage.



Q:How does steel formwork affect the overall construction timeline?
Steel formwork can significantly impact the overall construction timeline by expediting the process. Its durability and reusability allow for faster assembly and dismantling, reducing the time required for formwork installation and removal. Additionally, steel formwork provides a smoother surface finish, minimizing the need for additional plastering or rendering work, further saving time during the construction phase.
Q:What are the different locking mechanisms used in steel formwork?
To ensure stability and integrity in concrete construction projects, various locking mechanisms are employed in steel formwork. These mechanisms are designed to securely fasten the formwork panels together, preventing any shifting or movement that could compromise the accuracy and quality of the final concrete structure. One widely used locking mechanism is the wedge clamp system. This system utilizes steel wedges, which are inserted between the formwork panels and tightened with a hammer or mallet. The wedges establish a robust connection between the panels, firmly anchoring them in place. Another popular locking mechanism is the pin and wedge system. This system involves the insertion of steel pins through holes in the formwork panels. Subsequently, steel wedges are driven into these holes, securing the pins firmly. This creates a stable and secure connection between the panels. Some steel formwork systems also employ a hook and loop mechanism. This entails the attachment of metal hooks to one panel and metal loops to the neighboring panel. The hooks and loops interlock, providing a strong connection between the panels. This mechanism is often favored for its convenience and efficiency, making it a popular choice for specific construction projects. Moreover, certain steel formwork systems combine different locking mechanisms. For instance, a system may incorporate both wedge clamps and pin and wedge systems to enhance stability and strength. Ultimately, the various locking mechanisms employed in steel formwork serve the purpose of ensuring the secure connection of formwork panels throughout the concrete pouring process. Each mechanism offers its own advantages and may be more suitable for specific project requirements.
Q:What are the advantages and disadvantages of the application of the steel formwork and the plywood formwork in the construction?
From the aspect of Construction: the construction speed of the large steel formwork is fast, the quality effect is good; the wood formwork is assembled slowly, and the bulging phenomenon is easy to occur;
Q:Can steel formwork be used for curved walls?
Yes, steel formwork can be used for curved walls. Steel formwork offers flexibility and strength, making it suitable for creating curved shapes. The steel panels can be easily bent and shaped to match the desired curvature of the wall. Additionally, steel formwork provides excellent support for concrete, ensuring that the curved wall maintains its shape during the pouring and curing process. It is worth noting that specialized skills and expertise may be required to properly design and construct curved walls using steel formwork.
Q:How does steel formwork contribute to the quality of the concrete finish?
Steel formwork contributes to the quality of the concrete finish by providing a strong and rigid structure that ensures precise alignment and stability during the pouring and curing process. It helps to prevent any deformations, bulges, or surface irregularities, resulting in a smooth and even concrete surface. Additionally, steel formwork allows for greater flexibility in achieving intricate shapes and designs, enhancing the aesthetic appeal of the concrete finish.
Q:Can steel formwork be used for curved or complex structures?
Yes, steel formwork can be used for curved or complex structures. Steel formwork offers a high level of flexibility and versatility, making it suitable for creating various shapes and designs. Its strength and rigidity allow it to hold its shape, even when used for curved or intricate structures. Additionally, steel formwork can be easily fabricated and adjusted to meet specific project requirements, making it an ideal choice for constructing complex designs.
Q:What are the different components of steel formwork?
Steel formwork is a type of temporary structure that is used in construction projects to provide support and shape to concrete during the curing process. It consists of several components that work together to create a rigid and durable formwork system. The main components of steel formwork include: 1. Panels: These are the primary components of the formwork system and are usually made of steel or steel-reinforced plywood. They are available in different sizes and shapes and can be easily interconnected to create the desired formwork configuration. 2. Soldiers: These are vertical members that provide support to the formwork panels. They are typically made of steel and are adjustable in height, allowing for flexibility in formwork design. Soldiers are connected to the panels using connecting clamps or pins. 3. Waler Beams: These are horizontal members that help distribute the load evenly across the formwork system. Waler beams are connected to the soldiers using clamps or brackets and are usually made of steel or aluminum. 4. Tie Rods: These are used to hold the formwork panels and soldiers together. They are threaded rods that pass through the panels and are secured with nuts and washers on each side. Tie rods help in maintaining the required spacing between the panels and provide additional strength to the formwork system. 5. Formwork Accessories: These include various components such as clamps, brackets, wedges, and pins that are used to connect and secure the formwork components. They help in maintaining the stability and alignment of the formwork system during concrete pouring and curing. 6. Formwork Joints: These are specially designed connectors that allow for easy assembly and disassembly of the formwork system. They ensure proper alignment and tightness of the formwork components, preventing leakage of concrete and maintaining the desired shape. 7. Formwork Supports: These are used to provide additional support to the formwork system, especially for larger and complex structures. Formwork supports can be in the form of props, scaffolding, or specialized shoring systems, depending on the specific requirements of the project. Overall, these components work together to create a strong and stable formwork system that can withstand the pressure and weight of the concrete during the construction process. Steel formwork is preferred for its durability, reusability, and ease of assembly and disassembly, making it a popular choice in modern construction projects.
Q:What are the different types of ties used with steel formwork?
There are several types of ties commonly used with steel formwork, including snap ties, taper ties, she-bolts, wedge bolts, and pins. These ties help secure the formwork panels together and ensure the stability and strength of the structure being formed.
Q:How does steel formwork affect the overall energy efficiency of the structure?
Steel formwork can positively impact the overall energy efficiency of a structure in several ways. Firstly, steel formwork provides a durable and robust framework, ensuring precise construction and reducing the need for additional materials. This results in a more tightly sealed structure, minimizing air infiltration and heat loss. Additionally, steel formwork allows for the efficient installation of insulation materials, improving thermal performance and reducing energy consumption for heating and cooling. Moreover, the reusable nature of steel formwork reduces waste and promotes sustainability, which further enhances the overall energy efficiency of the structure.
Q:How does steel formwork affect the overall fire resistance of a building?
Steel formwork does not directly affect the overall fire resistance of a building. Fire resistance in a building is primarily determined by the materials used for structural components such as columns, beams, and floors. However, steel formwork can indirectly impact the fire resistance of a building in a few ways. Firstly, steel formwork is often used for constructing concrete structures. Concrete itself has good fire resistance properties, as it is a non-combustible material. When steel formwork is used to mold concrete, it helps create a fire-resistant structure by providing a strong and durable framework for the concrete to be poured into. This ensures that the structure will remain intact under high temperatures and prevent the collapse of the building during a fire. Secondly, steel formwork can also contribute to the fire resistance of a building through its ability to withstand high temperatures. Unlike other types of formwork materials, such as wood or plastic, steel formwork is less susceptible to burning or melting. This means that even in the event of a fire, the steel formwork will not contribute to the spread of flames or release toxic fumes, which can help to contain the fire and minimize its impact on the overall fire resistance of the building. Lastly, steel formwork can also indirectly affect the fire resistance of a building by facilitating the installation of fire protection measures. Steel formwork provides a smooth and sturdy surface, allowing for the easy application of fire-resistant coatings, such as intumescent paint or fireproof sprays. These coatings enhance the fire resistance of the structure by providing an additional layer of protection against heat transfer and fire spread. In summary, while steel formwork itself does not directly impact the fire resistance of a building, it plays a crucial role in creating a fire-resistant structure by providing a strong framework for concrete, withstanding high temperatures, and facilitating the installation of fire protection measures.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords