• PCS Solar Inverter - Photovoltaic Grid-Connected Inverter SG800MX System 1
  • PCS Solar Inverter - Photovoltaic Grid-Connected Inverter SG800MX System 2
PCS Solar Inverter - Photovoltaic Grid-Connected Inverter SG800MX

PCS Solar Inverter - Photovoltaic Grid-Connected Inverter SG800MX

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
50 unit
Supply Capability:
1000 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

1. Structure of Photovoltaic Grid-Connected Inverter SG800MX Description

A solar inverter, or PV inverter, or Solar converter, converts the variable direct current (DC) output of a photovoltaic (PV) solar panel into

 autility frequency alternating current (AC) that can be fed into a commercial electrical grid or used by a local, off-grid electrical network.

 It is acritical BOS–component in a photovoltaic system, allowing the use of ordinary AC-powered equipment. Solar inverters have

special functions adapted for use with photovoltaic arrays, including maximum power point tracking and anti-islanding protection.

Suitable for 50Hz/60Hz grid, could be used in Asia, North America and Europe.

 

2. Main Features of the Photovoltaic Grid-Connected Inverter SG800MX

• Transformerless inverter, max. efficiency of 98.7%, CEC efficiency of 98.5% for SG800MX,max. efficiency of 98.6%, CEC efficiency of 98.0% for SG750MX

• Employing a patented thermal management system, the inverter is able to operate from -13˚F to 140˚F (-25˚C to 60˚C), and up to 19,600’ (6,000 m).

• High power density, small equipment footprint

• DC disconnect, AC circuit breaker, separate DC & AC cabinets

• Max. DC input voltage is 1000V, can be mounted on a skid or an e-house, giving maximum design flexibility and lowering installation costs

• Continuous active power control

• Advanced grid support functionality, meet grid requirements around the world

• Full remote and local power curtailment, PF, HVRT, LVRT, FRT controls via ModBus & Ethernet

• Designed for 20+ years of operating life

• NEMA4X electronics cabinet

 

3. Photovoltaic Grid-Connected Inverter SG800MX Images

 

 

 

4. Photovoltaic Grid-Connected Inverter SG800MX Specification

Input Side Data

 

Max. PV input power

900kW

Max. PV input voltage

1000V

Start voltage

565V

Min. operation voltage

545V

Max. PV input current

1600A

MPP voltage range

545~820V

No. of DC inputs

1, 6-12

PV array configuration

Negative ground (standard), Floating or Positive Ground (optional)

Output Side Data

 

Nominal AC output power

800kW

Max. AC output apparent power

880kVA

Max. AC output current

1512A

THD

 <3% (nominal power)

Nominal AC voltage

342V

AC voltage range

300~377Vac

Nominal grid frequency

50/60Hz

Grid frequency range

47~52Hz/57~63Hz

Power factor

>0.99@default value at nominal power, adj. 0.8 overexcited~0.8 underexcited

Isolated transformer

No

DC current injection

<0.5 % In

Efficiency

 

Max. efficiency

98.70%

European efficiency

98.40%

CEC efficiency

98.50%

Protection

 

Input side disconnection device

DC load switch

Output side disconnection device

Breaker

DC overvoltage protection

Yes

AC overvoltage protection

Yes

Grid monitoring

Yes

Ground fault monitoring

Optional

Over temperature protection

Yes

Insulation monitoring

Optional

General Data

 

DimensionsW×H×D

2598x2164x1000mm

Weight

2340kg

Operating ambient temperature range

-25~+60(55 derating)

Noise emission

<70dB

Night power consumption

<100W

External auxiliary supply voltage

480/600V(3/N/PE)

Cooling method

Temperature controlled air-cooling

Ingress protection rating

NEMA 3RIP54

Allowable relative humidity range

0~95% no condensing

Max. operating altitude

6000m (3000m derating)

Fresh air consumption

4425 m³/h

Display

LCD

Communication

RS485/Modbus, Ethernet(Opt.)

 

5. FAQ of Photovoltaic Grid-Connected Inverter SG800MX

Q1. What is the difference between inverter and solar inverter?

A1. Inverter only has AC inpput, but solar inverter both connect to AC input and solar panel, it saves more power.

 

Q2. What is the difference between MPPT&PWM?

A2. MPPT has higher efficiency, it can track the max power point and won't waste energy.

Q: Can a solar inverter be used with different types of backup power sources?
Yes, a solar inverter can be used with different types of backup power sources such as batteries, generators, or the utility grid. The inverter's role is to convert the DC power generated by solar panels into AC power that can be used by household appliances or fed back into the grid. It can seamlessly switch between different power sources, ensuring uninterrupted power supply and maximizing the utilization of renewable energy.
Q: What is the difference between a string inverter and a micro inverter?
A string inverter is a type of inverter that is connected to a string of solar panels, converting the DC power generated by the panels into AC power for use in the electrical grid. On the other hand, a micro inverter is a smaller and individual inverter that is attached to each solar panel, converting the DC power directly at the panel level. The main difference between the two is that a string inverter operates at the string level, which means if one panel in the string is affected by shade or malfunction, the entire string's performance is affected. In contrast, with micro inverters, each panel operates independently, allowing for higher energy production and better performance in situations where panels are subjected to shading or varying conditions.
Q: What is the role of a maximum power point tracker in a solar inverter?
The role of a maximum power point tracker (MPPT) in a solar inverter is to constantly monitor and adjust the output voltage and current from the solar panels to ensure they are operating at their maximum power point. By tracking and maintaining this optimal operating point, the MPPT increases the overall energy efficiency and power output of the solar system. This is particularly important as solar panel performance can be affected by various factors such as shading, temperature, and varying sunlight intensity.
Q: How do you calculate the power output of a solar inverter?
To calculate the power output of a solar inverter, you need to multiply the input voltage by the input current. This will give you the input power. Then, multiply the efficiency of the inverter by the input power to get the output power.
Q: What are the common troubleshooting steps for a malfunctioning solar inverter?
The common troubleshooting steps for a malfunctioning solar inverter may include checking the power supply, inspecting the wiring connections, resetting the inverter, performing a firmware update, checking for error codes or error messages, and consulting the manufacturer's manual or contacting technical support for further assistance.
Q: What is the maximum power output of a residential solar inverter?
The maximum power output of a residential solar inverter can vary depending on the specific model and capacity. However, on average, residential solar inverters typically have a maximum power output ranging from 3 kilowatts (kW) to 10 kW.
Q: Can a solar inverter be used with solar-powered agricultural equipment?
Yes, a solar inverter can be used with solar-powered agricultural equipment. A solar inverter is an essential component in a solar power system as it converts the DC (direct current) electricity generated by solar panels into AC (alternating current) electricity that can be used to power various equipment, including agricultural machinery.
Q: What are the key differences between a central inverter and a string inverter?
The key differences between a central inverter and a string inverter lie in their design and functionality. A central inverter is a larger unit that is typically installed at a centralized location, such as a utility room, and is connected to multiple strings of solar panels. It converts the DC (direct current) electricity generated by the solar panels into AC (alternating current) electricity that can be used to power appliances or fed back into the grid. Central inverters are more suitable for larger installations, as they can handle higher power capacities and are more efficient at converting DC to AC. On the other hand, a string inverter is a smaller unit that is usually installed near the solar panels and is connected to each individual string of solar panels. It converts the DC electricity from each string into AC electricity. String inverters are more commonly used in smaller residential or commercial installations, as they offer more flexibility in panel arrangement and monitoring. They also allow for individual optimization and monitoring of each string, which can be beneficial in cases where panels may be shaded or have different orientations. In summary, while central inverters are better suited for larger installations and offer higher efficiency, string inverters provide more flexibility and individual optimization options for smaller installations.
Q: Can a solar inverter be used with a net metering system?
Yes, a solar inverter can be used with a net metering system. A solar inverter is an essential component of a solar power system as it converts the direct current (DC) generated by solar panels into usable alternating current (AC) electricity. Net metering allows for the excess electricity produced by the solar panels to be fed back into the grid, resulting in credit or compensation from the utility company. The solar inverter facilitates this process by ensuring that the electricity generated by the solar panels is synchronized with the grid, allowing for seamless integration and net metering.
Q: Can a solar inverter be used with different types of solar panel mounting systems?
Yes, a solar inverter can be used with different types of solar panel mounting systems. The solar inverter is designed to convert the direct current (DC) generated by the solar panels into alternating current (AC) that can be used to power appliances and electrical devices. Regardless of the mounting system, as long as the solar panels are connected to the solar inverter, it can efficiently convert the generated energy for use.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords