• Photovoltaic Grid-Connected Inverter SG500MX-M System 1
  • Photovoltaic Grid-Connected Inverter SG500MX-M System 2
Photovoltaic Grid-Connected Inverter SG500MX-M

Photovoltaic Grid-Connected Inverter SG500MX-M

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
50 unit
Supply Capability:
1000 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

1. Structure of Photovoltaic Grid-Connected Inverter SG500MX-M Description

A solar inverter, or PV inverter, or Solar converter, converts the variable direct current (DC) output of a photovoltaic (PV) solar panel into

 autility frequency alternating current (AC) that can be fed into a commercial electrical grid or used by a local, off-grid electrical network.

It is acritical BOS–component in a photovoltaic system, allowing the use of ordinary AC-powered equipment. Solar inverters have

special functions adapted for use with photovoltaic arrays, including maximum power point tracking and anti-islanding protection.

Suitable for 50Hz/60Hz grid, could be used in Asia, North America and Europe.

 

 

2. Main Features of the Photovoltaic Grid-Connected Inverter SG500MX-M

Advanced three-level circuit structure improves product's performance

4-MPPT, wide MPP voltage range

Modular design, long operation time

 

Film bus capacitors with long lifespan

Rotating the modules in use extends the inverter's lifespan

Inverter sleeping at night doubles the PCB lifespan

Elevated cooling performance and protection level ensures reliable operation

 

Less THD, more grid-friendly

Less common-mode interference, more environment-friendly

Compatible with two-winding transformer

Flexible setting of 1 to 4 MPPT

Reactive compensation on asymmetric power grid

Direct parallel connection at low voltage side, easy to expand the capacity

 

Comprehensive modular design

All components front-maintenance

Draw-type modules, service friendly design

 

Less THD, more grid-friendly

Less common-mode interference, more environment-friendly

Compatible with two-winding transformer

Flexible setting of 1 to 4 MPPT

Reactive compensation on asymmetric power grid

TÜV, CE, CGC certification, compliance with BDEW

 

 

3. Photovoltaic Grid-Connected Inverter SG500MX-M Images

 

 

 

 

 

4. Photovoltaic Grid-Connected Inverter SG500MX-M Specification

Input Side Data

 

Max. PV input power

560kW

Max. PV input voltage

1000V

Start voltage

520V

Min. operation voltage

480V

Max. PV input current

1064A

MPP voltage range

480~850V

No. of MPPTs

1, 2, 3, 4

No. of DC inputs

2 x 4

Output Side Data

 

Nominal AC output power

500kW

Max. AC output apparent power

550kVA

Max. AC output current

1018A

THD

<3%(Nominal power)

Nominal AC voltage

315V

AC voltage range

252~362V

Nominal grid frequency

50/60Hz

Grid frequency range

47~52 / 57~62Hz

Power factor

>0.99@default value at nominal power, adj. 0.9 overexcited~0.9 underexcited

Isolated transformer

No

DC current injection

<0.5 % In

Efficiency

 

Max. efficiency

98.80%

European efficiency

98.60%

Protection

 

Input side disconnection device

DC load switch

Output side disconnection device

AC load switch

DC overvoltage protection

Yes

AC overvoltage protection

Yes

Grid monitoring

Yes

Ground fault monitoring

Yes

Overheat protection

Yes

Insulation monitoring

Yes

General Data

 

DimensionsW×H×D

1606×2034×860mm

Weight

1400kg

Operating ambient temperature range

-30~+55

Night power consumption

<100W

External auxiliary supply voltage

220V, 8A

Cooling method

Temperature controlled aircooling

Ingress protection rating

IP21

Allowable relative humidity range

0~95% no condensing

Max. operating altitude

6000m(3000m derating)

Fresh air consumption

5575 m³/h

Display

Touch screen LCD

Communication

RS485/Modbus, Ethernet

 

5. FAQ of Photovoltaic Grid-Connected Inverter SG500MX-M

Q1. What is the difference between inverter and solar inverter?

A1. Inverter only has AC inpput, but solar inverter both connect to AC input and solar panel, it saves more power.

 

Q2. What is the difference between MPPT&PWM?

A2. MPPT has higher efficiency, it can track the max power point and won't waste energy.

 

Q: Can a solar inverter be used with solar-powered water pumps?
Yes, a solar inverter can be used with solar-powered water pumps. A solar inverter converts the DC power generated by solar panels into AC power, which is suitable for running various electrical devices, including water pumps. This allows the solar panels to directly power the water pump, enabling it to operate efficiently using renewable energy from the sun.
Q: Can a solar inverter be used with a solar tracker system?
Yes, a solar inverter can be used with a solar tracker system. In fact, using a solar inverter with a solar tracker system can enhance the overall efficiency and performance of the system. The solar inverter converts the direct current (DC) generated by the solar panels into alternating current (AC) that can be used to power electrical appliances or be fed into the grid. This AC power can then be easily integrated with the solar tracker system to continuously adjust the position and alignment of the solar panels to maximize their exposure to sunlight. Overall, combining a solar inverter with a solar tracker system can optimize the energy generation and increase the overall output of the solar power system.
Q: What is the role of a solar inverter in a utility-scale system?
The role of a solar inverter in a utility-scale system is to convert the direct current (DC) electricity produced by the solar panels into alternating current (AC) electricity that can be fed into the utility grid. It also ensures the maximum power output of the solar panels by tracking the maximum power point. Additionally, the inverter provides grid synchronization and protection functions to ensure the safe and efficient operation of the utility-scale solar system.
Q: Can a solar inverter be installed outdoors?
Yes, a solar inverter can be installed outdoors. However, it is important to ensure that the inverter is specifically designed for outdoor use and is protected from extreme weather conditions such as rain, snow, and excessive heat.
Q: Can a solar inverter work without batteries?
Yes, a solar inverter can work without batteries. In a grid-tied solar system, the inverter converts the DC power generated by the solar panels into AC power, which can be used to power appliances or fed back into the utility grid. Batteries are typically used in off-grid systems to store excess energy for later use, but they are not necessary for the basic function of a solar inverter.
Q: Can a solar inverter be used in countries with different electrical standards?
Yes, a solar inverter can be used in countries with different electrical standards. However, it may require certain modifications or additional equipment to ensure compatibility with the specific electrical standards of that country.
Q: What is the efficiency loss of a solar inverter over time?
The efficiency loss of a solar inverter over time depends on various factors such as the quality of the inverter, maintenance practices, and environmental conditions. Generally, high-quality inverters experience a minimal efficiency loss, typically around 0.5% to 1% per year. However, if the inverter is poorly maintained or subject to harsh conditions, the efficiency loss could be higher. Regular maintenance and monitoring can help mitigate efficiency loss and ensure optimal performance.
Q: How does a solar inverter synchronize with the electrical grid?
A solar inverter synchronizes with the electrical grid by constantly monitoring the voltage and frequency of the grid. It adjusts its own output voltage and frequency to match the grid's, ensuring that the electricity generated by the solar panels is in phase and synchronized with the grid. This synchronization allows the solar power to be seamlessly integrated into the grid, enabling efficient power transfer and preventing any disruption to the supply.
Q: Can a solar inverter be used with different types of energy management systems?
Yes, a solar inverter can be used with different types of energy management systems. Solar inverters are designed to convert the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power various electrical devices. They are compatible with different energy management systems, including grid-tied systems, off-grid systems, and hybrid systems. The inverter's main function is to ensure the efficient and safe conversion of solar energy, regardless of the type of energy management system it is paired with.
Q: How does a solar inverter handle voltage fluctuations during grid disturbances?
A solar inverter handles voltage fluctuations during grid disturbances by continuously monitoring the grid voltage. When it detects a fluctuation or disturbance, it adjusts its own output voltage to match the grid's voltage. This ensures that the solar inverter remains synchronized with the grid and delivers stable electricity without causing any damage to the connected appliances or the grid itself.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords