• Mold Material AISI D2 Hot Rolled Steel Round Bar System 1
  • Mold Material AISI D2 Hot Rolled Steel Round Bar System 2
  • Mold Material AISI D2 Hot Rolled Steel Round Bar System 3
Mold Material AISI D2 Hot Rolled Steel Round Bar

Mold Material AISI D2 Hot Rolled Steel Round Bar

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
30 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Carbon Steel,Spring Steel,Bearing Steel,Gear Steel,Deformed Steel,Stainless Steel,Alloy Steel
Shape:
Steel Coil,Steel Sheet,Steel Wire Rod,Steel Flat Bar,Steel Square Bar,Steel Angle,Steel Round Bar,Steel Billets
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Saw,Extruded,EFW,Spring
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Certification:
UL,ISO,SGS,BV,IBR,RoHS,CE,API,BSI

Mold material AISI D2 hot rolled steel round bar

Description:

Ledeburitic chromium cold work tool steel; with very small hardening deformations, very wear resistant, less resistant to impacts than NC11 / 1.2080, with good ductility, good cutting properties, much harder than NC10 and NC11/1.2080 due to content of molybdenum and vanadium .

 

Chemical composition:

Country

Steel NO.

C

Si

Mn

Cr

Mo

V

P

S

Other

USA AISI

D2

1.40-1.60

0.30-0.50

0.30-0.50

11.0-13.0

0.70-1.20

(0.80)

≤0.025

≤0.025

Co:0.60

Delivery condition:

Hot rolled or forging

EAF or ESR material

Black or machined surface

 

Available sizes:

Round bar size:  20-500mm

Thickness: 20-300mm

Width: 205-610mm 

Length: 2000-5800mm

 

Heat Treatment:

1) Quenching temperature: 1000--1040°C

Cooling Medium: oil-cooling or air-cooling

Tempering temperature: 180-200°C, by two times

Tempering Hardness: ≥63.0HRC

 

2) Quenching temperature: 1060--1080°C

Cooling Medium: oil-cooling or air-cooling

Tempering temperature: 500-540°C, by two times

Tempering Hardness: ≥59.0-61.0HRC

 

Application:

High performance cutting tools, broaches, milling cutters, reamers, blanking dies, dies, punches, rolling rolls, tools for cutting paper, marble and plastics, cold stamping and extruding tools .

Product show

.jpg

Workshop show

Mold Material AISI D2 Hot Rolled Steel Round Bar

Shipping 

1. FedEx/DHL/UPS/TNT for samples, Door-to-Door;

2. By Air or by Sea for batch goods, for FCL; Airport/ Port receiving;

3. Customers specifying freight forwarders or negotiable shipping methods!

Delivery Time: 3-7 days for samples; 5-25 days for batch goods.

Payment Terms

1.Payment: T/T, L/C, Western Union, MoneyGram,PayPal; 30% deposits; 70% balance before delivery.

2.MOQ: 1pcs

3.Warranty : 3 years

4.Package Informations: 1) EXPORT, In 20 feet (GW 25 ton) or 40 feet Container (GW 25 ton)

                                        2)as customer's requirement


Why choose us? 

(1) The leading exporter in China special steel industry.       

(2) Large stocks for various sizes, fast delivery date.       

(3) Good business relationship with China famous factories.       

(4) More than 7 years steel exporting experience.       

(5) Good after-sales service guarantee. 


Q: What are the different electroplating techniques used for special steel?
There are several electroplating techniques used for special steel, including electroless nickel plating, zinc plating, tin plating, and chromium plating. These techniques involve the process of depositing a layer of metal onto the surface of the steel through an electrochemical reaction. Each technique has its own unique characteristics and benefits, allowing for enhanced corrosion resistance, improved aesthetics, increased hardness, and other desired properties for special steel applications.
Q: What are the different forging methods used for special steel?
Special steel can be forged using several different methods, including open die forging, closed die forging, and ring rolling. Open die forging, also known as smith forging, involves heating the metal and shaping it between flat dies or anvils. The metal is hammered and rotated repeatedly until it reaches the desired shape. This method is ideal for producing customized large and complex shapes. Closed die forging, also known as impression die forging, requires placing the heated metal between multiple dies that have impressions of the final shape. The metal is compressed to fill the impressions and take on the shape of the dies. This method is suitable for producing accurately sized small to medium components. Ring rolling is a specific forging method used to create seamless rings. The metal is heated and positioned between two rollers, which apply pressure to shape the metal into a ring. This technique is commonly used for producing rings with thin walls and large diameters. Secondary forging processes can be employed to further enhance the properties of special steel. Heat treatment, such as annealing or quenching, can improve the material's strength and hardness. Additionally, machining operations can be performed to achieve the desired dimensions and surface finish. The choice of forging method for special steel depends on factors such as the desired shape, size, and properties of the final product. Each method has its own advantages and limitations, and manufacturers select the most appropriate technique based on the specific requirements of the application.
Q: What are the specific requirements for special steel used in the marine propeller industry?
The special steel used in the marine propeller industry must meet specific requirements to ensure optimal performance and durability in harsh marine environments. Some of the key requirements include: 1. Corrosion Resistance: Marine propellers are constantly exposed to saltwater, which can cause corrosion. Therefore, special steel used in the marine propeller industry must have high resistance to corrosion, preventing the formation of rust and maintaining the propeller's integrity over time. 2. Strength and Toughness: Marine propellers are subjected to high mechanical stresses and impacts, especially in rough sea conditions. The special steel used must possess high strength and toughness to withstand these forces without deformation or failure. 3. Fatigue Resistance: Propellers experience cyclic loading due to rotational forces, which can lead to fatigue failure over time. The special steel should have excellent fatigue resistance to withstand millions of load cycles without developing cracks or fractures. 4. Weldability: Propellers are often manufactured in segments and then welded together. The special steel used must be easily weldable, ensuring strong and reliable joints that can withstand the propeller's operational stresses. 5. Heat Resistance: Propellers generate significant heat due to friction and propulsion forces. The special steel should have good heat resistance to prevent deformation or loss of mechanical properties at elevated temperatures. 6. Machinability: Special steel used in the marine propeller industry should be readily machinable to allow for precise shaping and finishing of complex propeller blade designs. 7. Non-Magnetic Properties: Many modern ships utilize magnetic navigation systems and sensors. Therefore, the special steel used in propellers should have low magnetic permeability to minimize interference with these systems. Meeting these specific requirements ensures that the special steel used in the marine propeller industry can withstand the challenging conditions of seawater, provide efficient propulsion, and maintain its structural integrity throughout the propeller's lifespan.
Q: How is case-hardening steel used in the manufacturing of gears?
Case-hardening steel is used in the manufacturing of gears to increase their surface hardness while maintaining a tough and durable core. This process involves heating the gear in the presence of a carbon-rich gas or by immersing it in a carbon-rich environment. The carbon diffuses into the outer layer of the steel, creating a hardened surface. This hardened layer provides enhanced wear resistance and significantly extends the lifespan of the gear, making it suitable for demanding applications where gears experience high loads and friction.
Q: What are the requirements for special steel used in packaging machinery?
The specifications for the special steel utilized in packaging machinery can differ depending on the specific application and type of packaging machinery employed. Nonetheless, there are certain common expectations for this type of steel. To begin with, it is crucial for the special steel employed in packaging machinery to exhibit exceptional resistance to corrosion. This is because packaging machinery frequently comes into contact with various liquids, such as water, oils, and cleaning solutions. The corrosion resistance feature aids in preventing the steel from deteriorating or rusting when exposed to these substances, thereby ensuring the longevity and dependability of the machinery. Secondly, the steel should possess a high level of hardness and wear resistance. Packaging machinery often entails moving parts and components that are constantly subjected to friction and wear. Therefore, the steel employed in these parts must be capable of enduring repetitive contact and abrasion without undergoing significant wear or deformation. The high level of hardness also helps in preventing the formation of scratches or grooves on the surfaces, which could compromise the quality of the packaging. Furthermore, the special steel should possess good machinability and formability. Packaging machinery frequently requires complex shapes and intricate designs, necessitating steel that can be easily machined and formed into the desired shapes and sizes. This facilitates the manufacturing process and allows for the creation of precise and accurate components. Additionally, the steel should possess high tensile strength and toughness. Packaging machinery may be subjected to mechanical stresses and impacts during operation, and the steel used in its construction must be capable of withstanding these forces without fracturing or breaking. The high tensile strength ensures the structural integrity of the machinery, while toughness helps in preventing the formation of cracks or fractures under sudden loads or impacts. Lastly, the special steel employed in packaging machinery should be cost-effective and readily available. The cost of the steel should be reasonable and within the manufacturer's budget, without compromising the quality or performance of the machinery. Additionally, the steel should be readily available in the market to ensure a continuous supply for manufacturing purposes. In conclusion, the requirements for special steel used in packaging machinery encompass corrosion resistance, high hardness and wear resistance, good machinability and formability, high tensile strength and toughness, as well as cost-effectiveness. Fulfilling these requirements guarantees the durability, reliability, and efficiency of the packaging machinery in various industrial applications.
Q: What are the specific requirements for special steel used in the chemical reactor industry?
The specific requirements for special steel used in the chemical reactor industry typically include high corrosion resistance, excellent heat resistance, and strong mechanical properties. It should also have the ability to withstand aggressive chemical environments, such as strong acids or alkalis. Additionally, the steel should have low levels of impurities to prevent contamination of the chemical reactions.
Q: What are the different methods of surface grinding for special steel?
There are several different methods of surface grinding that can be used for special steel. Here are some of the most commonly utilized methods: 1. Blanchard Grinding: This method involves using a rotary table and a grinding wheel to remove material from the surface of the steel. The grinding wheel is typically made of abrasive particles bonded together in a matrix and rotates at a high speed. Blanchard grinding is known for its ability to quickly and efficiently remove large amounts of material, making it suitable for roughing operations. 2. Precision Grinding: This method is often used for finishing operations, where a high degree of accuracy and surface finish is required. Precision grinding involves using a surface grinder with a fine-grit grinding wheel to remove a small amount of material from the surface of the steel. This process is typically slower and more precise than Blanchard grinding, resulting in a smoother and more polished surface. 3. Centerless Grinding: This method is commonly used for cylindrical steel parts that require a high degree of precision. Centerless grinding involves feeding the steel between a grinding wheel and a regulating wheel, with the grinding wheel removing material from the surface as it rotates. The regulating wheel controls the speed and feed rate of the steel, ensuring consistent and accurate grinding. 4. Creep Feed Grinding: This method is used for heavy stock removal on large steel parts. Creep feed grinding involves using a slow feed rate and deep cuts to remove material from the surface. This method is typically used for specialized applications where traditional surface grinding methods are not suitable due to the size or complexity of the steel part. Overall, the choice of surface grinding method for special steel will depend on factors such as the desired surface finish, accuracy requirements, and the size and complexity of the steel part. It is important to consult with a skilled grinding professional to determine the most appropriate method for a specific application.
Q: Can special steel be used in the computer manufacturing industry?
Yes, special steel can be used in the computer manufacturing industry. It is often used for making computer casings, hard drive components, and other structural parts due to its high strength, durability, and resistance to corrosion.
Q: What are the different methods of hardening special steel?
There exist various techniques for strengthening special steel, each possessing its own merits and suitable applications. 1. Quenching: A widely employed approach for steel hardening, it entails heating the steel to a critical temperature and rapidly cooling it in a quenching medium such as oil, water, or air. This rapid cooling prompts the formation of a martensitic structure, rendering the steel harder but more brittle compared to its original state. 2. Tempering: Following quenching, steel is often subjected to tempering to decrease brittleness and enhance toughness. This process involves reheating the hardened steel to a specific temperature and maintaining it at that temperature for a predetermined duration. By doing so, internal stresses are reduced, and the overall mechanical properties of the steel are improved. 3. Case hardening: Employed to augment the hardness of the outer layer of steel while preserving a tough and ductile core, case hardening involves introducing carbon or nitrogen into the steel's surface through methods like carburizing or nitriding. This results in the creation of a hardened surface layer while retaining the desired properties within the core. 4. Induction hardening: Particularly useful for localized hardening of specific regions within a component, this technique employs an electromagnetic field to solely heat the desired area of the steel, followed by rapid quenching. Induction hardening allows precise control over the hardened region while maintaining desired properties in the remainder of the component. 5. Cryogenic treatment: Involving subjecting hardened steel to extremely low temperatures, often below -150°C (-238°F), this process further refines the steel's microstructure, enhancing its hardness, wear resistance, and dimensional stability. 6. Flame hardening: This method entails heating the steel's surface using a high-temperature flame and subsequently quenching it. Flame hardening is typically employed for large components or specific areas requiring localized hardening. Selecting the appropriate method is crucial and dependent on the steel's specific requirements and intended application. Factors such as desired hardness, toughness, wear resistance, and dimensional stability play a pivotal role in method selection.
Q: What are the different surface coatings available for special steel?
There are several different surface coatings available for special steel, including galvanized coatings, zinc coatings, powder coatings, epoxy coatings, and chrome coatings. These coatings provide various benefits such as corrosion resistance, improved durability, enhanced aesthetics, and increased lifespan of the steel. The choice of coating depends on the specific application and desired properties for the steel.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords