Mild Hot Rolled Deformed Steel Rebars for Construction
- Loading Port:
- Tianjin
- Payment Terms:
- TT or LC
- Min Order Qty:
- 25 m.t.
- Supply Capability:
- 200000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Product Description:
We are offering Mild Hot Rolled Deformed Steel Rebars for Construction at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.
Product Applications:
Mild Hot Rolled Deformed Steel Rebars for Construction are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries. Deformed bar is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger..
Product Advantages:
OKorder's Mild Hot Rolled Deformed Steel Rebars for Construction are durable, strong, and resist corrosion.
Main Product Features:
· Premium quality
· Prompt delivery & seaworthy packing (30 days after receiving deposit)
· Corrosion resistance
· Can be recycled and reused
· Mill test certification
· Professional Service
· Competitive pricing
Specifications of Mild Hot Rolled Deformed Steel Rebars for Construction:
Standard | GB UK USA | HRB335 HRB400 HRB500 G460B, B500A, B500B,B500C GR40, GR60 | |
Diameter | 6mm,8mm,10mm,12mm,14mm,16mm,18mm,20mm, 22mm,25mm,28mm,32mm,36mm,40mm,50mm | ||
Length | 6M, 9M,12M or as required | ||
Payment term | TT or L/C | ||
Trade terms | FOB, CFR, CIF | ||
Application | Building, construction | ||
Each bundle weight | 2-3MT, or as required | ||
Type | Hot rolled steel rebar | ||
Brand name | OKORDER |
Theoretical weight and section area of each diameter as below for your information:
Diameter(mm) | Section area (mm²) | Mass(kg/m) | Weight of 12m (kg) | Pcs/ton |
6 | 28.27 | 0.222 | 2.664 | 375.38 |
8 | 50.27 | 0.395 | 4.74 | 210.97 |
10 | 78.54 | 0.617 | 7.404 | 135.06 |
12 | 113.1 | 0.888 | 10.656 | 93.84 |
14 | 153.9 | 1.21 | 14.52 | 68.87 |
16 | 201.1 | 1.58 | 18.96 | 52.74 |
18 | 254.5 | 2.00 | 24 | 41.67 |
20 | 314.2 | 2.47 | 29.64 | 33.74 |
22 | 380.1 | 2.98 | 35.76 | 27.96 |
25 | 490.9 | 3.85 | 46.2 | 21.65 |
28 | 615.8 | 4.83 | 57.96 | 17.25 |
32 | 804.2 | 6.31 | 75.72 | 13.21 |
36 | 1018 | 7.99 | 98.88 | 10.43 |
40 | 1257 | 9.87 | 118.44 | 8.44 |
50 | 1964 | 15.42 | 185.04 | 5.40 |
Deformed Steel Rebar in warehouse
Packaging & Delivery of Mild Hot Rolled Deformed Steel Rebars for Construction:
Packaging Detail: products are packed in bundle and then shipped by container or bulk vessel, deformed bar is usually naked strapping delivery, when storing, please pay attention to moisture proof. The performance of rust will produce adverse effect.
Delivery Detail: within 45 days after received advanced payment or LC.
Label: to be specified by customer, generally, each bundle has 1-2 labels
Note:
1. Our products are produced according to national standard (GB), if not, supply according to national standards (GB) or agreement as customer required.
2. Other Grade and Standard Deformed Steel Bar we can supply:
Grade: GR40/GR60, G460B/B500A/B500B/B500C,BST500S
Standard: ASTM, BS, DIN
The Minimum Order Quantity of these products is high, and need to be confirmed.
3. We can not only supply Deformed Steel Bar; if you need anything about building materials, please contact us for further information.
4. Please send us your detail specifications when inquire. We will reply to you as soon as possible. We sincerely hope we can establish a long stable business relationship.
FAQ:
Q1: What is the normal tolerance of Hot Rolled Mild Steel Angle Beams for Structures and for Buildings?
A1: Normally 3%-5%, but we can also produce the goods according to the customers' requests.
Q2: Can fit in the containers of 20inches the steel beams of 6M?
A2: No proble, we can put them into the containers in the form sideling.
Q3: The products are invoicing on theoritical weight or on actual weight?
A3: We can do it in both manners, according to the customers' request
- Q: What are the factors that can cause steel rebars to corrode prematurely?
- There are several factors that can contribute to the premature corrosion of steel rebars. 1. Exposure to moisture: One of the primary causes of rebar corrosion is the presence of moisture. When steel rebars are exposed to water or high humidity levels for extended periods, it can lead to the formation of rust or oxidation on the surface of the rebar. 2. Chloride ions: Chloride ions, commonly found in seawater or de-icing salts, can accelerate the corrosion process of steel rebars. These ions can penetrate the concrete cover and come into contact with the rebar, causing it to corrode at a faster rate. 3. Carbonation of concrete: Carbonation occurs when carbon dioxide from the atmosphere reacts with the alkaline components of concrete. This process reduces the pH levels, leading to a decrease in the passivating effect of the concrete cover and increasing the likelihood of rebar corrosion. 4. Insufficient concrete cover: Inadequate concrete cover over the rebars can expose them to external elements, such as moisture and chloride ions, leading to accelerated corrosion. Insufficient cover may occur due to poor construction practices or inadequate design specifications. 5. Poor quality of concrete: If the concrete used in construction is of low quality, it may contain impurities or lack proper curing, resulting in an increased permeability of the concrete. This allows harmful substances like moisture and chlorides to penetrate the concrete more easily, leading to premature rebar corrosion. 6. Galvanic corrosion: When dissimilar metals come into contact in the presence of an electrolyte (such as moisture), a galvanic cell can form, resulting in accelerated corrosion. For example, if steel rebars are in contact with aluminum or copper materials, galvanic corrosion can occur. 7. Construction defects: Issues during the construction phase, such as poor workmanship or inadequate protective measures, can contribute to premature rebar corrosion. Examples include inadequate concrete compaction, improper reinforcement placement, or lack of proper waterproofing. To prevent premature corrosion of steel rebars, it is crucial to use high-quality materials, ensure proper concrete cover, employ corrosion-resistant coatings or inhibitors, and implement appropriate construction practices. Regular inspections and maintenance can also help identify and address any potential corrosion issues before they worsen.
- Q: Are steel rebars suitable for use in high-temperature applications?
- Yes, steel rebars are generally suitable for use in high-temperature applications. Steel has excellent heat resistance properties and can withstand high temperatures without significant structural degradation. However, it is important to consider the specific requirements of the application and consult with experts to ensure the appropriate type of steel rebar is selected to meet the desired temperature resistance.
- Q: What are the methods used for corrosion protection of steel rebars?
- There are several methods used for corrosion protection of steel rebars. 1. Coating: One common method is to apply a protective coating on the surface of the steel rebar. This coating acts as a barrier, preventing moisture and oxygen from reaching the steel surface and causing corrosion. Coatings can be applied using various techniques such as hot-dip galvanizing, epoxy coatings, or fusion-bonded epoxy coatings. 2. Cathodic Protection: Another method is cathodic protection, which involves the use of sacrificial anodes or impressed current systems. Sacrificial anodes are made of a more reactive metal (such as zinc or magnesium) that corrodes over time instead of the steel rebar. This ensures that the steel remains protected. Impressed current systems use an external power source to provide a protective current to the steel rebar, preventing corrosion. 3. Concrete cover: A simple but effective method is to provide a sufficient concrete cover over the steel rebar. The concrete acts as a physical barrier, shielding the steel from the environment. The thickness of the concrete cover is critical and should be designed according to specific standards to ensure adequate protection. 4. Inhibitors: Corrosion inhibitors can be added to the concrete mix or applied on the surface of the steel rebar. These inhibitors work by reducing the corrosive effects of moisture and oxygen on the steel surface. They can be organic or inorganic compounds that form a protective layer on the steel, inhibiting the corrosion process. 5. Proper design and construction practices: Lastly, proper design and construction practices can greatly contribute to corrosion protection. This includes avoiding the use of dissimilar metals that can cause galvanic corrosion, ensuring proper drainage to prevent water accumulation, and taking measures to minimize exposure to corrosive environments. It is important to note that a combination of these methods is often used to provide optimal corrosion protection for steel rebars, depending on the specific project requirements and environmental conditions.
- Q: What are the different methods of connecting steel rebars together?
- The connection of steel rebars can be achieved through various methods, depending on the specific needs of the construction project. Here are some commonly used techniques: 1. Lap Splicing: This method involves overlapping two rebars and securing them together using steel wire or bars. It is a cost-effective approach, although it requires longer rebars. 2. Mechanical Splicing: By using a mechanical coupler such as a sleeve or collar, two rebars can be connected. This method offers a strong and reliable connection and allows for flexibility in rebar positioning. It is faster and more efficient than lap splicing. 3. Welding: Steel rebars can be connected by heating and fusing their ends together using an electric arc. This creates a permanent and robust connection. However, welding demands skilled labor and can be time-consuming and expensive. 4. Threaded Couplers: Similar to mechanical splicing, this method involves threading the ends of rebars and connecting them using a threaded coupler. It provides a reliable connection and is commonly used in larger construction projects. 5. Grout Sleeve Splicing: This technique incorporates a grout-filled sleeve between two rebars to establish a connection. The grout enhances strength and stability, making it suitable for seismic zones or areas requiring high strength and ductility. 6. Reinforcing Bar Couplers (RBC): RBC is a proprietary method that employs a threaded sleeve filled with epoxy resin to connect rebars. It offers high load capacity, ease of installation, and resistance to corrosion. To determine the most appropriate method for connecting steel rebars in a specific construction project, it is crucial to consult structural engineers and adhere to building codes and regulations.
- Q: How do steel rebars affect the thermal conductivity of concrete structures?
- Steel rebars have a significant impact on the thermal conductivity of concrete structures. The inclusion of steel rebars in concrete increases the overall thermal conductivity of the structure. This is because steel has a much higher thermal conductivity than concrete. Consequently, heat transfer through the concrete is facilitated by the presence of steel rebars, leading to a higher overall thermal conductivity of the structure.
- Q: What is the lifespan of steel rebars in different environments?
- The lifespan of steel rebars can vary depending on the environment in which they are used. In general, steel rebars have a long lifespan and are highly durable materials. However, different environmental conditions can affect their longevity. In a dry and non-corrosive environment, such as indoors or in a well-maintained building, steel rebars can last for several decades and sometimes even longer. The absence of moisture and corrosive agents helps to preserve the integrity of the steel, minimizing the risk of deterioration. In a marine or coastal environment, where there is constant exposure to saltwater and high humidity, the lifespan of steel rebars may be reduced. The corrosive nature of saltwater can cause the steel to corrode at a faster rate, potentially shortening the lifespan of the rebars. In such environments, special coatings or treatments can be applied to the steel rebars to enhance their corrosion resistance and extend their lifespan. Similarly, steel rebars used in areas with high levels of air pollution or industrial emissions may also experience accelerated corrosion. Airborne pollutants, such as sulfur dioxide or sulfuric acid, can react with the steel and lead to rusting. Regular maintenance and cleaning of the rebars can help mitigate the effects of these corrosive agents and prolong their lifespan. It is important to note that the quality of the steel rebars and the construction practices also play a significant role in determining their lifespan. Using high-quality rebars that meet industry standards and following proper installation techniques can greatly enhance their durability and longevity. Overall, while steel rebars generally have a long lifespan, the specific environment in which they are used will influence how long they can effectively serve their purpose. By considering the environmental factors and taking appropriate measures to prevent corrosion, the lifespan of steel rebars can be maximized, ensuring the safety and longevity of the structures in which they are utilized.
- Q: How do steel rebars contribute to the overall seismic resistance of a structure?
- Steel rebars play a crucial role in enhancing the overall seismic resistance of a structure. During an earthquake, a structure undergoes significant lateral forces and vibrations. These forces can cause the structure to deform or even collapse if not properly addressed. Steel rebars, also known as reinforcement bars, are used to reinforce concrete structures and provide added strength and stability. One of the primary contributions of steel rebars is their ability to absorb and distribute seismic energy. When an earthquake occurs, the rebars act as a backbone within the concrete, absorbing the seismic forces and preventing the structure from experiencing excessive deformation. The rebars help to distribute the energy throughout the structure, reducing localized stress and preventing concentrated damage. Furthermore, steel rebars improve the ductility of a structure. Ductility refers to the ability of a material to deform without fracturing. During an earthquake, the ground shakes, causing the structure to sway. Steel rebars enhance the ductility of concrete by providing an additional pathway for the energy to dissipate. This allows the structure to absorb and dissipate the seismic energy by deforming in a controlled manner, ensuring that it remains intact and minimizes damage. Moreover, steel rebars increase the tensile strength of concrete. Concrete is strong in compression but weak in tension. The inclusion of steel rebars counteracts this weakness by providing tensile strength to the structure. When an earthquake occurs, the rebars bear the tensile forces and prevent the concrete from cracking or collapsing under tension. This reinforcement ensures that the structure remains stable and resilient during seismic events. In summary, steel rebars contribute significantly to the overall seismic resistance of a structure by absorbing and distributing seismic energy, enhancing ductility, and increasing the tensile strength of concrete. Their inclusion in the construction process ensures that the structure can withstand the lateral forces and vibrations caused by earthquakes, reducing the risk of damage or collapse.
- Q: What are the guidelines for the proper spacing of steel rebars in slabs?
- The guidelines for the proper spacing of steel rebars in slabs are crucial to ensure the structural integrity and strength of the concrete slab. Here are the general guidelines to follow: 1. Rebar Diameter: The diameter of the steel rebar should be determined based on the load and design requirements. Common rebars sizes range from 6mm to 32mm. 2. Spacing: The spacing between rebars is determined by the thickness of the slab and the design specifications. As a general rule, the spacing should not exceed three times the slab thickness. For example, if the slab thickness is 150mm, the maximum spacing between rebars should be 450mm. 3. Edge Distance: The distance between the rebar and the edge of the slab is also crucial. The minimum edge distance should be at least 50mm to prevent cracking and ensure proper load distribution. 4. Clear Cover: The clear cover refers to the distance between the rebar and the surface of the slab. It is essential to provide sufficient clear cover to protect the rebar from corrosion. The clear cover requirements vary depending on the environmental conditions, but commonly range from 20mm to 40mm. 5. Reinforcement Ratio: The reinforcement ratio is the amount of steel reinforcement used per unit area of the slab. This ratio is determined by the load requirements and the design specifications. Typically, the reinforcement ratio ranges from 0.5% to 2%. 6. Lap Splicing: In cases where the length of the rebar is insufficient, lap splicing is required. The lap length should be determined based on the rebar diameter, grade, and design requirements. 7. Placement: The rebars should be placed accurately and securely inside the slab formwork. Proper alignment and placement ensure that the rebars are positioned correctly to resist the anticipated loads. It is important to note that these guidelines are general and may vary depending on the specific project, structural design, and local building codes. It is recommended to consult with a structural engineer or refer to the relevant building codes and standards for precise guidelines specific to your project.
- Q: Are steel rebars resistant to earthquakes?
- Yes, steel rebars are highly resistant to earthquakes. The use of steel rebars in reinforced concrete structures significantly enhances their structural integrity and helps to withstand the forces generated during an earthquake. The high tensile strength and ductility of steel rebars allow them to absorb and distribute seismic forces, minimizing the risk of structural failure.
- Q: How do steel rebars affect the overall structural stability of a building?
- Steel rebars significantly enhance the overall structural stability of a building. By reinforcing concrete, rebars increase its tensile strength and prevent cracking and failure under heavy loads or external forces. This reinforcement ensures that the building can withstand various stresses, such as earthquakes, wind, and vibrations, improving its durability and safety.
Send your message to us
Mild Hot Rolled Deformed Steel Rebars for Construction
- Loading Port:
- Tianjin
- Payment Terms:
- TT or LC
- Min Order Qty:
- 25 m.t.
- Supply Capability:
- 200000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords