• Magnum Solar Inverter 1kva Rack / Tower Puresine Wave Online Extensible G-Sensor LCD UPS 1 System 1
  • Magnum Solar Inverter 1kva Rack / Tower Puresine Wave Online Extensible G-Sensor LCD UPS 1 System 2
  • Magnum Solar Inverter 1kva Rack / Tower Puresine Wave Online Extensible G-Sensor LCD UPS 1 System 3
  • Magnum Solar Inverter 1kva Rack / Tower Puresine Wave Online Extensible G-Sensor LCD UPS 1 System 4
  • Magnum Solar Inverter 1kva Rack / Tower Puresine Wave Online Extensible G-Sensor LCD UPS 1 System 5
Magnum Solar Inverter 1kva Rack / Tower Puresine Wave Online Extensible G-Sensor LCD UPS 1

Magnum Solar Inverter 1kva Rack / Tower Puresine Wave Online Extensible G-Sensor LCD UPS 1

Ref Price:
get latest price
Loading Port:
Guangzhou
Payment Terms:
TT OR LC
Min Order Qty:
30 unit
Supply Capability:
300000 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

ModelRT-1KSRT-1KLRT-2KSRT-2KLRT-3KSRT-3KL
Rated power1KVA2KVA3KVA
DisplayLED or LCD, depends on user's choice
INPUT
Voltage110V:80~138VAC/220V:115~300VAC
Frequency110V:46~54Hz or 56~64Hz/220V:40~60Hz/Adjustable by software
OUTPUT
Voltage110V:110±2%VAC/220V:220±2%VAC
Frequency110V:46~64Hz/220V:46~54Hz/Same as AC(AC mode)
110V: 50 or 60±0.2Hz/220V:50±0.2Hz(Batt. mode)
Wave formSine wave
BATTERY
QTY. & capacity of battery12V/7.5AH*3pcs—————2V/7.5AH*8pcs—————12V/7.5AH*8pcs—————
Nominal DC input voltage—————36VDC—————96VDC—————96VDC
Transfer time0 ms
Overload capability110%~150% for 30% seconds then transfer to bypass output, 150% above for 300 milliseconds.
ENVIRONMENT
Environment of performanceTemperature 0℃~40℃, Humidity 20%~90%
PHYSITAL
(kg) / Net weight (kg)110V:19   220V:16.3110V:11.8 220V:9.138.1kg(10.3kg for US+27.8kg for battery pack)110V:14.2 220V:11.539kg(11.2kg for US+27.8kg for battery pack)110V:15 220V:12.3
(mm) / Unit dimention (mm)441*445*88441*445*88(*2 sets, there into 1 set for battery pack)441*445*88441*445*88(*2 sets, there into 1 set for battery pack)441*445*88
MANAGEMENT
Interface110V:USB+RS232 220V:RJ45/11+RS232, Intelling slot selectable.

 

 

1. Wide range of input voltage

The UPS can offer normal and stable service voltage under its input voltage range. When the input voltage is out of its range the machine will switch to battery mode automatically to keep the output power in order to protect the equipment, such as computers, ensure they will not be damaged by the over high or over low voltage, users can continue the operation of equipment for a while or save the data on computers while the power network is abnormal.

 

2. Wide range of AVR(Automatic voltage regulation)

In the product’s input voltage range and under 3 steps of intelligent AVR function, it can provide a stable output voltage.

 

3. Automatic self detection when UPS on(LED).

Before the UPS on, red, yellow, blue LED will light up two times by cycle turns, after self detection UPS switch to AC mode/battery mode or working mode. 

 

4. Silence function

In the "battery mode", shortly press the switch to turn off the buzzer. But the battery is about to run out or the load is too heavy, the buzzer sound cannot be muted.

 

5. Overload protection

In the battery mode, output voltage turn down correspondingly when it is overload, after the capacity of load is lower than the rated power then output voltage will back to rated value, it ensures the UPS will not shut down by abrupt overload which caused by surging current during the computer is working and other equipment is added.

 

6. Short circuit protection

When the mis-operation caused the load short circuit or computer failure (such as power tube breakdown of switch) cause short circuit, the UPS will shutdown automatically for protection.

 

7. The low current switch

This UPS adopts low current switch to extend the service life which is longer than conventional battery and high current switch in AC current path.

 

8. Automatic charging

There are two charging mode, charging time is faster than ordinary charging mode, higher efficiency, and greatly prolonging the service life of the battery.

 

9. With a bypass output

Independent bypass output socket for external printers or scanners of computer peripherals, with surge protection of the load.

 

1KVA Rack / Tower Puresine Wave Online Extensible G-sensor LCD UPS 1

1KVA Rack / Tower Puresine Wave Online Extensible G-sensor LCD UPS 1

1KVA Rack / Tower Puresine Wave Online Extensible G-sensor LCD UPS 1

1KVA Rack / Tower Puresine Wave Online Extensible G-sensor LCD UPS 1

1KVA Rack / Tower Puresine Wave Online Extensible G-sensor LCD UPS 1

FAQ

1.    Where can I buy your products?

You could find our products from dealers or contact our sales team directly. We will provide you with detailed services.

2.    How to contact us?

Contact details can be found from website www.okorder.com to contact us. We look forward to providing you with professional services.

3.    What is the application field of your products?

Our current GW1500~4600-SS series and GW3000~4600-DS, with the flexible expansion ability and allocation capability, can be used in the small photovoltaic (PV) grid power generation systems of family units as well as the commercial photovoltaic system such as BIPV, BAPV and etc.

4.    What kinds of modules do your inventers support?

Our inventers support most of mainstream components and modules in the market. Should you require more details, please do not hesitate to contact our technical personnel.

Q: How does a solar inverter handle power surges or fluctuations?
A solar inverter handles power surges or fluctuations by using advanced circuitry and protective measures. It typically includes surge protection devices that can absorb excessive voltage spikes, diverting them away from the system. Additionally, the inverter continuously monitors the grid voltage and adjusts its own output accordingly to maintain a stable and safe supply of electricity.
Q: What is the role of a power factor correction circuit in a solar inverter?
The role of a power factor correction circuit in a solar inverter is to optimize the power factor of the electrical system. It ensures that the energy being generated by the solar panels is efficiently utilized by balancing the reactive power and reducing harmonic distortions. This helps in improving the overall system efficiency, reducing energy losses, and complying with grid regulations.
Q: Can a solar inverter be integrated with a smart home system?
Yes, a solar inverter can be integrated with a smart home system. By connecting the solar inverter to the smart home system, users can monitor and control their solar energy production and consumption remotely. This integration allows for better energy management, optimizing the use of solar power, and potentially saving on electricity bills.
Q: Can a solar inverter be used in three-phase systems?
Yes, a solar inverter can be used in three-phase systems. In fact, there are specific three-phase solar inverters designed to convert the DC power generated by solar panels into AC power for utilization in three-phase electrical systems. These inverters are capable of efficiently managing the power flow and ensuring balanced distribution across all three phases.
Q: How does a solar inverter handle fluctuations in solar panel output due to temperature changes?
A solar inverter handles fluctuations in solar panel output due to temperature changes by incorporating a maximum power point tracking (MPPT) algorithm. This algorithm continuously adjusts the voltage and current levels to optimize the power output from the solar panels, compensating for any temperature-related variations. By dynamically adapting to temperature changes, the solar inverter ensures that the maximum power is extracted from the panels and efficiently converted into usable electricity.
Q: How does a solar inverter handle variations in solar panel degradation over time?
A solar inverter is designed to handle variations in solar panel degradation over time by continuously monitoring the output of the solar panels and adjusting its operation accordingly. It helps to optimize the power generation by compensating for any decrease in panel efficiency due to degradation. This is achieved through advanced algorithms and maximum power point tracking (MPPT) technology, which ensures that the inverter operates at the optimal voltage and current levels to extract the maximum power from the panels, even as their performance degrades over time.
Q: What is the role of a solar inverter in a community solar project?
The role of a solar inverter in a community solar project is to convert the direct current (DC) electricity produced by solar panels into alternating current (AC) electricity that can be used by homes and businesses in the community. It ensures that the solar energy generated is compatible with the existing electrical grid, allowing for seamless integration and distribution of clean energy to the community.
Q: How does a solar inverter handle sudden changes in solar irradiation?
A solar inverter handles sudden changes in solar irradiation by continuously monitoring the incoming solar energy and adjusting its output accordingly. When there is a sudden increase in solar irradiation, the inverter quickly ramps up its power conversion to match the higher energy input. Similarly, when there is a sudden decrease in solar irradiation, the inverter reduces its power conversion to align with the lower energy input. This dynamic response ensures that the inverter efficiently converts the available solar energy into usable electricity, maintaining a stable power output despite fluctuations in solar irradiation.
Q: Can a solar inverter be used with solar concentrators?
Yes, a solar inverter can be used with solar concentrators. Solar concentrators focus sunlight onto a smaller area, increasing the intensity of the light. The solar inverter's primary function is to convert the DC power generated by the solar panels into AC power suitable for use in homes or businesses. Therefore, it can still be used to convert the enhanced DC power generated by solar concentrators into usable AC power.
Q: What is the role of maximum power control in a solar inverter?
The role of maximum power control in a solar inverter is to ensure that the photovoltaic (PV) system operates at its maximum power point (MPP) to optimize energy production. It continuously adjusts the operating voltage and current of the PV panels to maintain the MPP, despite changes in environmental conditions such as temperature and sunlight intensity. This control mechanism maximizes the efficiency and overall performance of the solar inverter, allowing it to extract the highest possible amount of energy from the solar panels.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords