• 6kVA Rack/Tower Puresine Wave Online Extensible G-Sensor LCD UPS with Solar Inverter PCB System 1
  • 6kVA Rack/Tower Puresine Wave Online Extensible G-Sensor LCD UPS with Solar Inverter PCB System 2
  • 6kVA Rack/Tower Puresine Wave Online Extensible G-Sensor LCD UPS with Solar Inverter PCB System 3
  • 6kVA Rack/Tower Puresine Wave Online Extensible G-Sensor LCD UPS with Solar Inverter PCB System 4
  • 6kVA Rack/Tower Puresine Wave Online Extensible G-Sensor LCD UPS with Solar Inverter PCB System 5
6kVA Rack/Tower Puresine Wave Online Extensible G-Sensor LCD UPS with Solar Inverter PCB

6kVA Rack/Tower Puresine Wave Online Extensible G-Sensor LCD UPS with Solar Inverter PCB

Ref Price:
get latest price
Loading Port:
Guangzhou
Payment Terms:
TT OR LC
Min Order Qty:
30 unit
Supply Capability:
300000 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

 

 

ModelRT-6KSRT-6KLRT-10KSRT-10KL
Rated power6KVA10KVA
DisplayLED or LCD, depends on user's choice
INPUT
Voltage110V:80~138VAC/220V: 120~275VAC
Frequency110V:46~54Hz or 56~64Hz/220V:40~60Hz/Adjustable by software
OUTPUT
Voltage110V:110±2%VAC/220V:220±2%VAC
Frequency110V:46~64Hz/220V:46~54Hz/Same as AC(AC mode)
110V: 50 or 60Hz/220V:50±0.2Hz(Batt. mode)
Wave formSine wave
BATTERY
QTY. & capacity of battery12V/7.5AH*3pcs—————2V/7.5AH*8pcs12V/7.5AH*8pcs—————
Nominal DC input voltage—————36VDC—————96VDC—————96VDC
Transfer time0 ms
Overload capability110%~150% for 30% seconds then transfer to bypass output, 150% above for 300 milliseconds.
ENVIRONMENT
Environment of performanceTemperature 0℃~40℃, Humidity 20%~90%
PHYSITAL
(kg) / Net weight (kg)19.5110V:11.8 220V:9.138.4kg(23kg for US+55.4kg for battery pack)23
(mm) / Unit dimention (mm)625*438*130625*438*130(*2 sets, there into 1 set for battery pack)625*438*130
MANAGEMENT
Interface110V:USB+RS232 220V:RJ45/11+RS232, Intelling slot selectable.

 

 

 

 

 

1. Wide range of input voltage

The UPS can offer normal and stable service voltage under its input voltage range. When the input voltage is out of its range the machine will switch to battery mode automatically to keep the output power in order to protect the equipment, such as computers, ensure they will not be damaged by the over high or over low voltage, users can continue the operation of equipment for a while or save the data on computers while the power network is abnormal.

 

2. Wide range of AVR(Automatic voltage regulation)

In the product’s input voltage range and under 3 steps of intelligent AVR function, it can provide a stable output voltage.

 

3. Automatic self detection when UPS on(LED).

Before the UPS on, red, yellow, blue LED will light up two times by cycle turns, after self detection UPS switch to AC mode/battery mode or working mode. 

 

4. Silence function

In the "battery mode", shortly press the switch to turn off the buzzer. But the battery is about to run out or the load is too heavy, the buzzer sound cannot be muted.

 

5. Overload protection

In the battery mode, output voltage turn down correspondingly when it is overload, after the capacity of load is lower than the rated power then output voltage will back to rated value, it ensures the UPS will not shut down by abrupt overload which caused by surging current during the computer is working and other equipment is added.

 

6. Short circuit protection

When the mis-operation caused the load short circuit or computer failure (such as power tube breakdown of switch) cause short circuit, the UPS will shutdown automatically for protection.

 

7. The low current switch

This UPS adopts low current switch to extend the service life which is longer than conventional battery and high current switch in AC current path.

 

8. Automatic charging

There are two charging mode, charging time is faster than ordinary charging mode, higher efficiency, and greatly prolonging the service life of the battery.

 

9. With a bypass output

Independent bypass output socket for external printers or scanners of computer peripherals, with surge protection of the load.

 

6KVA Rack / Tower Puresine Wave Online Extensible G-sensor LCD UPS 1

6KVA Rack / Tower Puresine Wave Online Extensible G-sensor LCD UPS 1

6KVA Rack / Tower Puresine Wave Online Extensible G-sensor LCD UPS 1

6KVA Rack / Tower Puresine Wave Online Extensible G-sensor LCD UPS 1

6KVA Rack / Tower Puresine Wave Online Extensible G-sensor LCD UPS 1

FAQ

1.    Where can I buy your products?

You could find our products from dealers or contact our sales team directly. We will provide you with detailed services.

2.    How to contact us?

Contact details can be found from website www.okorder.com to contact us. We look forward to providing you with professional services.

3.    What is the application field of your products?

Our current GW1500~4600-SS series and GW3000~4600-DS, with the flexible expansion ability and allocation capability, can be used in the small photovoltaic (PV) grid power generation systems of family units as well as the commercial photovoltaic system such as BIPV, BAPV and etc.

4.    What kinds of modules do your inventers support?

Our inventers support most of mainstream components and modules in the market. Should you require more details, please do not hesitate to contact our technical personnel.

 

Q:Can a solar inverter be used in extreme weather conditions?
Yes, solar inverters are designed to withstand extreme weather conditions. They are built to be durable and resistant to factors such as temperature fluctuations, humidity, and harsh weather elements. However, it is always recommended to consult the manufacturer's guidelines to ensure proper installation and protection measures are in place for specific weather conditions.
Q:How does the power factor affect the performance of a solar inverter?
The power factor affects the performance of a solar inverter by determining the efficiency and reliability of the system. A low power factor can result in increased losses and reduced overall efficiency, leading to higher energy consumption and reduced power output. In contrast, a high power factor improves system performance by minimizing losses and maximizing the utilization of available power, resulting in higher efficiency and better overall performance of the solar inverter.
Q:Can a solar inverter be used with solar-powered greenhouse systems?
Yes, a solar inverter can be used with solar-powered greenhouse systems. A solar inverter is responsible for converting the DC power produced by solar panels into AC power that can be used to run electrical devices. In the context of a solar-powered greenhouse system, the solar inverter would be essential for converting the solar energy collected by the panels into usable electricity to power various components such as fans, pumps, lighting, and climate control systems within the greenhouse.
Q:How does a solar inverter handle shading or partial panel obstructions?
A solar inverter handles shading or partial panel obstructions by utilizing maximum power point tracking (MPPT) technology. This technology allows the inverter to constantly monitor each individual solar panel's output and adjust the voltage and current to maximize power production. If shading or obstructions occur on one or more panels, the inverter can dynamically optimize the output of the unshaded panels, ensuring maximum efficiency and power generation despite the partial loss of sunlight.
Q:Can a solar inverter be used in a community solar project?
Yes, a solar inverter can be used in a community solar project. A solar inverter is an essential component that converts the direct current (DC) generated by solar panels into alternating current (AC) for use in homes and businesses. In a community solar project, multiple participants can benefit from a shared solar installation, and each participant can have their own solar inverter to convert the DC energy into usable AC power.
Q:How does shade affect the performance of a solar inverter?
Shade negatively impacts the performance of a solar inverter as it reduces the amount of sunlight reaching the solar panels, thereby reducing the amount of electricity generated. Inverters are designed to operate optimally under full sunlight, and when shaded, their efficiency decreases, leading to a decrease in overall energy production. Additionally, shade can cause hotspots on panels, potentially damaging the system and reducing its lifespan. To ensure maximum performance, it is important to minimize shade and ensure unobstructed sunlight for solar inverters.
Q:What is the difference between a PV inverter and a solar inverter?
Instability, the wind speed and the equipment itself will directly affect the generator rotation, so the voltage and current fluctuations, frequency instability, in short, is the power quality is poor) Therefore, through the inverter after the first rectification inverter to improve the quality of power
Q:Can a solar inverter be used in a hybrid solar system?
Yes, a solar inverter can be used in a hybrid solar system. A hybrid solar system combines both solar energy and another source of energy, such as a battery or grid power. The solar inverter is responsible for converting the DC (direct current) power generated by the solar panels into AC (alternating current) power that can be used to power the electrical devices in a home or business. In a hybrid solar system, the solar inverter can still perform this function, allowing the system to utilize solar energy while also being able to draw power from other sources when needed.
Q:How does a solar inverter handle overloading?
A solar inverter handles overloading by constantly monitoring the power output from the solar panels and the load demand. If the load demand exceeds the maximum capacity of the inverter, it will automatically reduce the power output or shut down to prevent any damage or overheating. This ensures the safety and optimal performance of the inverter and the connected devices.
Q:Can a solar inverter be used with different types of solar panels (monocrystalline, polycrystalline, thin-film)?
Yes, a solar inverter can be used with different types of solar panels such as monocrystalline, polycrystalline, and thin-film. Solar inverters are designed to convert the direct current (DC) electricity generated by solar panels into alternating current (AC) electricity that can be used to power household appliances and feed into the grid. As long as the solar panel's output voltage and current fall within the operating range of the inverter, it can be used regardless of the panel type.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords