• 6kVA Rack/Tower Puresine Wave Online Extensible G-Sensor LCD UPS with Solar Inverter PCB System 1
  • 6kVA Rack/Tower Puresine Wave Online Extensible G-Sensor LCD UPS with Solar Inverter PCB System 2
  • 6kVA Rack/Tower Puresine Wave Online Extensible G-Sensor LCD UPS with Solar Inverter PCB System 3
  • 6kVA Rack/Tower Puresine Wave Online Extensible G-Sensor LCD UPS with Solar Inverter PCB System 4
  • 6kVA Rack/Tower Puresine Wave Online Extensible G-Sensor LCD UPS with Solar Inverter PCB System 5
6kVA Rack/Tower Puresine Wave Online Extensible G-Sensor LCD UPS with Solar Inverter PCB

6kVA Rack/Tower Puresine Wave Online Extensible G-Sensor LCD UPS with Solar Inverter PCB

Ref Price:
get latest price
Loading Port:
Guangzhou
Payment Terms:
TT OR LC
Min Order Qty:
30 unit
Supply Capability:
300000 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

 

 

ModelRT-6KSRT-6KLRT-10KSRT-10KL
Rated power6KVA10KVA
DisplayLED or LCD, depends on user's choice
INPUT
Voltage110V:80~138VAC/220V: 120~275VAC
Frequency110V:46~54Hz or 56~64Hz/220V:40~60Hz/Adjustable by software
OUTPUT
Voltage110V:110±2%VAC/220V:220±2%VAC
Frequency110V:46~64Hz/220V:46~54Hz/Same as AC(AC mode)
110V: 50 or 60Hz/220V:50±0.2Hz(Batt. mode)
Wave formSine wave
BATTERY
QTY. & capacity of battery12V/7.5AH*3pcs—————2V/7.5AH*8pcs12V/7.5AH*8pcs—————
Nominal DC input voltage—————36VDC—————96VDC—————96VDC
Transfer time0 ms
Overload capability110%~150% for 30% seconds then transfer to bypass output, 150% above for 300 milliseconds.
ENVIRONMENT
Environment of performanceTemperature 0℃~40℃, Humidity 20%~90%
PHYSITAL
(kg) / Net weight (kg)19.5110V:11.8 220V:9.138.4kg(23kg for US+55.4kg for battery pack)23
(mm) / Unit dimention (mm)625*438*130625*438*130(*2 sets, there into 1 set for battery pack)625*438*130
MANAGEMENT
Interface110V:USB+RS232 220V:RJ45/11+RS232, Intelling slot selectable.

 

 

 

 

 

1. Wide range of input voltage

The UPS can offer normal and stable service voltage under its input voltage range. When the input voltage is out of its range the machine will switch to battery mode automatically to keep the output power in order to protect the equipment, such as computers, ensure they will not be damaged by the over high or over low voltage, users can continue the operation of equipment for a while or save the data on computers while the power network is abnormal.

 

2. Wide range of AVR(Automatic voltage regulation)

In the product’s input voltage range and under 3 steps of intelligent AVR function, it can provide a stable output voltage.

 

3. Automatic self detection when UPS on(LED).

Before the UPS on, red, yellow, blue LED will light up two times by cycle turns, after self detection UPS switch to AC mode/battery mode or working mode. 

 

4. Silence function

In the "battery mode", shortly press the switch to turn off the buzzer. But the battery is about to run out or the load is too heavy, the buzzer sound cannot be muted.

 

5. Overload protection

In the battery mode, output voltage turn down correspondingly when it is overload, after the capacity of load is lower than the rated power then output voltage will back to rated value, it ensures the UPS will not shut down by abrupt overload which caused by surging current during the computer is working and other equipment is added.

 

6. Short circuit protection

When the mis-operation caused the load short circuit or computer failure (such as power tube breakdown of switch) cause short circuit, the UPS will shutdown automatically for protection.

 

7. The low current switch

This UPS adopts low current switch to extend the service life which is longer than conventional battery and high current switch in AC current path.

 

8. Automatic charging

There are two charging mode, charging time is faster than ordinary charging mode, higher efficiency, and greatly prolonging the service life of the battery.

 

9. With a bypass output

Independent bypass output socket for external printers or scanners of computer peripherals, with surge protection of the load.

 

6KVA Rack / Tower Puresine Wave Online Extensible G-sensor LCD UPS 1

6KVA Rack / Tower Puresine Wave Online Extensible G-sensor LCD UPS 1

6KVA Rack / Tower Puresine Wave Online Extensible G-sensor LCD UPS 1

6KVA Rack / Tower Puresine Wave Online Extensible G-sensor LCD UPS 1

6KVA Rack / Tower Puresine Wave Online Extensible G-sensor LCD UPS 1

FAQ

1.    Where can I buy your products?

You could find our products from dealers or contact our sales team directly. We will provide you with detailed services.

2.    How to contact us?

Contact details can be found from website www.okorder.com to contact us. We look forward to providing you with professional services.

3.    What is the application field of your products?

Our current GW1500~4600-SS series and GW3000~4600-DS, with the flexible expansion ability and allocation capability, can be used in the small photovoltaic (PV) grid power generation systems of family units as well as the commercial photovoltaic system such as BIPV, BAPV and etc.

4.    What kinds of modules do your inventers support?

Our inventers support most of mainstream components and modules in the market. Should you require more details, please do not hesitate to contact our technical personnel.

 

Q:How does the power factor correction affect the performance of a solar inverter?
Power factor correction can significantly improve the performance of a solar inverter. By correcting the power factor, the inverter can optimize the energy conversion process, resulting in increased efficiency and reduced losses. This correction helps in minimizing reactive power, improving voltage stability, and enhancing the overall power quality of the inverter. Ultimately, power factor correction ensures that the solar inverter operates at its maximum capacity, leading to improved performance and increased energy output.
Q:What happens to excess solar energy generated by the inverter?
Excess solar energy generated by the inverter can be either stored in batteries for later use or fed back into the electrical grid, depending on the setup of the solar power system.
Q:What is the role of a fault detection system in a solar inverter?
The role of a fault detection system in a solar inverter is to monitor the performance and integrity of the inverter and solar panel system. It detects and identifies any abnormalities or malfunctions within the system, such as voltage fluctuations, short circuits, or overheating. By promptly identifying and reporting faults, the system helps ensure the safe and efficient operation of the solar inverter, preventing potential damage and maximizing the overall energy generation.
Q:How does a solar inverter work?
A solar inverter works by converting the direct current (DC) electricity produced by solar panels into alternating current (AC) electricity that can be used to power household appliances and be fed into the electrical grid. It performs this conversion by using electronic components, such as transistors and capacitors, to change the voltage and frequency of the electricity. The inverter also monitors the solar panel's output and adjusts its operation to ensure optimal performance and efficiency.
Q:What are the common issues and troubleshooting steps for a solar inverter?
Solar inverters can encounter various problems, such as failure to turn on, lack of power output, insufficient power output, intermittent power output, or error messages displayed on the inverter. Below are some steps you can take to troubleshoot these issues: 1. Verify the power supply: Ensure that the inverter is properly connected to the power source and that there are no electrical supply problems. Check the circuit breaker or fuse box to ensure it has not been tripped. 2. Inspect the wiring: Examine the wiring connections to ensure they are secure and undamaged. Loose or disconnected wires can cause power issues. If any damage is found, consider seeking the assistance of a professional electrician for repair or replacement. 3. Clean the solar panels: Dust, debris, or shading on the solar panels can reduce power output. Use a soft cloth or hose to clean the panels. If nearby trees or structures cast shade on the panels, consider trimming or removing them if feasible. 4. Check for error messages: If the inverter displays an error message, consult the user manual or manufacturer's website for the error code's meaning and recommended troubleshooting steps. If necessary, contact the manufacturer's customer support for further guidance. 5. Monitor weather conditions: Solar inverters may generate less power during cloudy or overcast days. However, if power output consistently remains low even in ideal weather conditions, there may be an issue with the inverter itself. 6. Reset the inverter: Some inverters offer a reset button or option. Attempt to reset the inverter to its factory settings, but bear in mind that this may erase any customized settings or configurations. 7. Update the firmware: Check if there are any firmware updates available for your specific inverter model. Updating the firmware can sometimes resolve issues and enhance performance. 8. Seek professional consultation: If the above troubleshooting steps do not resolve the issue, it is advisable to contact a professional solar installer or electrician. They possess the expertise and equipment required to diagnose and address more complex problems with solar inverters. Always prioritize safety when troubleshooting electrical equipment. If you are uncertain or uncomfortable with any troubleshooting steps, it is best to seek professional assistance to prevent potential hazards.
Q:Can a solar inverter be used in areas with high seismic activity?
Certainly, a solar inverter can be utilized in regions with high seismic activity. Nevertheless, it is imperative to guarantee that the solar inverter is engineered to endure and operate securely under such circumstances. Solar inverters are commonly constructed with sturdy and long-lasting materials to withstand a range of environmental factors, including seismic activity. They frequently undergo testing and certification to meet specific standards for seismic resistance. When installing a solar inverter in an area with high seismic activity, it is vital to adhere to the manufacturer's guidelines and recommendations. This may involve implementing additional measures such as reinforced mounting structures, flexible connections, and appropriate grounding techniques to enhance the stability and resilience of the inverter system. Furthermore, routine maintenance and inspections should be carried out to ensure that the solar inverter remains in optimal working condition even after seismic events. This entails examining for any indications of damage, loose connections, or other potential issues that may have arisen due to seismic activity. By taking necessary precautions and employing seismic-resistant solar inverters, it is plausible to safely and efficiently harness solar energy even in areas prone to seismic activity.
Q:What is the function of a solar inverter?
The function of a solar inverter is to convert the direct current (DC) electricity generated by solar panels into alternating current (AC) electricity that can be used to power household appliances and feed into the electrical grid.
Q:Can a solar inverter be used with different grid voltages or frequencies?
No, a solar inverter cannot be used with different grid voltages or frequencies. Solar inverters are designed to convert the DC power generated by solar panels into AC power that matches the specific voltage and frequency of the grid it is connected to. Using a solar inverter with different grid voltages or frequencies can result in compatibility issues and potentially damage the equipment.
Q:Can a solar inverter be used with a solar-powered water pump?
Yes, a solar inverter can be used with a solar-powered water pump. The solar inverter converts the DC power generated by the solar panels into AC power, which is suitable for powering the water pump. This allows for efficient and reliable operation of the pump using solar energy.
Q:How is a solar inverter connected to the solar panels?
A solar inverter is connected to solar panels through a direct current (DC) connection. The DC power generated by the solar panels is sent to the inverter, which converts it into alternating current (AC) power that can be used to power electrical devices or be fed into the grid.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords