JIS SS400 Hot Rolled Angle Steel
- Loading Port:
- China Main Port
- Payment Terms:
- TT or LC
- Min Order Qty:
- -
- Supply Capability:
- -
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Product Description:
OKorder is offering high quality Angle Steel at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.
Product Applications:
According to the needs of different structures, Angle can compose to different force support component, and also can be the connections between components. It is widely used in various building structures and engineering structures such as roof beams, bridges, transmission towers, hoisting machinery and transport machinery, ships, industrial furnaces, reaction tower, container frame and warehouse etc.
.
Product Advantages:
OKorder's Angle Steel are durable, strong, and resist corrosion.
Main Product Features:
· Premium quality
· Prompt delivery & seaworthy packing (30 days after receiving deposit)
· Corrosion resistance
· Can be recycled and reused
· Mill test certification
· Professional Service
· Competitive pricing
Product Specifications:
1.Standards:GB,ASTM,BS,AISI,DIN,JIS
2.Invoicing on theoretical weight or actual weight as customer request
3.Material: JIS G3192,SS400;SS540.
4. Payment terms:
1).100% irrevocable L/C at sight.
2).30% T/T prepaid and the balance against the copy of B/L.
3) 30% T/T prepaid and the balance against L/C
4. Material Specifications:
Grade | Yield Strength,N/mm² | Extension Strength N/mm² | |||
Thickness of Steel,mm | |||||
≦16 | >16-≦40 | >40-≦100 | >100 | ||
SS330 | ≧205 | ≧195 | ≧175 | ≧165 | 330-430 |
SS400 | ≧245 | ≧235 | ≧215 | ≧205 | 400-510 |
SS490 | ≧285 | ≧275 | ≧255 | ≧245 | 490-610 |
SS540 | ≧400 | ≧390 | - | - | ≧540 |
FAQ:
Q1: Why buy Materials & Equipment from OKorder.com?
A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.
Q2: How do we guarantee the quality of our products?
A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.
Q3: How soon can we receive the product after purchase?
A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.
Images:
- Q: How do you prevent buckling of steel angles under compressive loads?
- To prevent steel angles from buckling under compressive loads, there are several steps that can be taken: 1. Increasing the section modulus: By broadening or thickening the steel angle, its ability to resist bending can be improved, thus enhancing its resistance to compressive loads without buckling. 2. Increasing the moment of inertia: The moment of inertia, which determines a cross-sectional shape's resistance to bending, can be increased by either adding more material or using a different shape with a greater moment of inertia. This makes the steel angle stiffer and less prone to buckling. 3. Providing lateral support: Lateral support can be provided by incorporating bracing or stiffeners into the steel angle. This helps distribute the compressive load and prevents buckling. The bracing or stiffeners should be designed to withstand the applied loads and prevent any local distortions or deformations. 4. Using thicker or higher strength steel: Thicker steel has a higher resistance to bending, while higher strength steel can bear greater stresses before reaching its yield point. By utilizing thicker or higher strength steel, the steel angle can withstand higher compressive loads without buckling. 5. Properly designing and installing connections: The connections between the steel angle and other structural components should be carefully designed and installed. Sufficient connection details should be provided to ensure proper transfer of the compressive load and adequate support for the steel angle. 6. Taking the effective length factor into consideration: The effective length factor is a parameter that considers the buckling behavior of a member. By accurately incorporating the effective length factor into design calculations, the risk of buckling can be minimized. 7. Conducting a comprehensive structural analysis: It is crucial to conduct a structural analysis to determine the expected compressive loads and potential buckling modes. By utilizing appropriate software or calculations, the necessary measures can be implemented to prevent buckling. In conclusion, preventing buckling of steel angles under compressive loads requires a combination of design considerations, material selection, and proper installation techniques. By following these measures, the structural integrity and safety of steel angles can be ensured in various applications.
- Q: How do you transport steel angles safely?
- To transport steel angles safely, it is important to use appropriate equipment such as cranes, forklifts, or flatbed trucks with proper securing mechanisms. The angles should be securely stacked or bundled to prevent shifting or falling during transit. Additionally, using protective measures like padding or strapping can help avoid damage to the steel angles and ensure safe transportation.
- Q: Can steel angles be used as supports for solar panels?
- Yes, steel angles can be used as supports for solar panels. Steel angles are commonly used in construction due to their strength and durability. When properly designed and installed, steel angles can provide a sturdy and reliable support structure for solar panels. They can be easily welded or bolted together to create a secure framework that can withstand the weight of the panels and any environmental factors such as wind loads. Additionally, steel angles can be galvanized or coated to enhance their resistance to corrosion, making them suitable for outdoor applications such as solar panel installations.
- Q: How are steel angles made?
- The production of steel angles involves a process known as hot rolling, where steel angles are created. The process begins by heating a large steel billet in a furnace at extremely high temperatures until it becomes malleable. Subsequently, the heated billet is passed through a series of rollers that shape it into the desired angle profile. These rollers possess grooves that correspond to the desired angle dimensions, allowing the steel to gradually take on the shape of an angle. As the steel billet is fed through the rollers, it undergoes compression and elongation, resulting in a longer and thinner piece of steel with the desired angle shape. This process serves to enhance the mechanical properties of the steel, increasing its strength and durability. Once the steel angle has been formed, it proceeds through a cooling process to stabilize its shape and prevent any deformations. Subsequently, it is cut to the necessary length and undergoes various finishing processes, such as straightening, surface treatment, and inspection, to ensure its quality and dimensional accuracy. In summary, the production of steel angles encompasses a series of processes, including heating, rolling, cooling, cutting, and finishing. These processes are meticulously designed to manufacture high-quality steel angles with precise shapes, suitable for a wide range of construction and manufacturing applications.
- Q: How do you calculate the bending stress in a steel angle?
- To calculate the bending stress in a steel angle, you need to understand the basics of bending moment and the moment of inertia of the angle. First, you will need to determine the bending moment acting on the steel angle. This can be done by considering the applied load or force and its distance from the point of rotation. The bending moment is calculated as the product of the applied load and the distance between the point of rotation and the line of action of the force. Next, you will need to determine the moment of inertia of the steel angle. The moment of inertia measures the resistance of an object to changes in its rotational motion. It depends on the shape and size of the object. In the case of a steel angle, the moment of inertia can be calculated using the appropriate formula for the specific cross-sectional shape of the angle. Once you have determined the bending moment and the moment of inertia, you can calculate the bending stress using the formula: Bending Stress = (Bending Moment * Distance from Neutral Axis) / Moment of Inertia The bending stress represents the internal resistance within the steel angle to the bending moment. It is typically expressed in units of force per unit area, such as pounds per square inch (psi) or newtons per square meter (Pa). It is important to note that the calculation of bending stress assumes that the steel angle behaves elastically, meaning it is not subjected to excessive deformation or permanent damage. If the applied bending moment exceeds the elastic limit of the steel angle, plastic deformation or failure may occur, and a different analysis method would be required.
- Q: What is the typical density of steel angles?
- The typical density of steel angles can vary depending on the specific type and grade of steel being used. However, on average, the density of steel angles ranges between 7.7 to 8.1 grams per cubic centimeter (g/cm³) or 7700 to 8100 kilograms per cubic meter (kg/m³). This density is relatively high compared to other materials, making steel angles strong and durable for various structural and construction applications.
- Q: Can steel angles be used in the construction of theatres?
- The utilization of steel angles in theatre construction is indeed possible. Their strength and versatility make them common structural components in construction. They offer stability and support, making them suitable for various theatre construction applications. Steel angles can be employed in theatres to establish the framework for stage platforms, catwalks, and balconies. They can also be used to support lighting fixtures, rigging systems, and sound equipment. Additionally, they can reinforce the structural integrity of the theatre building itself, such as beams, columns, and trusses. The advantages of using steel angles in theatre construction are plentiful. Firstly, steel is a durable and long-lasting material, ensuring the stability and safety of the theatre structure over time. Moreover, steel angles can be easily customized and fabricated to meet specific design requirements, allowing for flexibility in theatre construction. Furthermore, steel angles possess fire-resistant properties, which are of utmost importance in theatre environments where fire safety is a priority. They can withstand high temperatures and provide structural support even in the event of a fire, guaranteeing the safety of both the building and its occupants. Overall, steel angles are an excellent choice for theatre construction due to their strength, versatility, and fire-resistant properties. They furnish the necessary structural support and stability required for the unique needs of theatre spaces, ensuring a safe and functional environment for performances and audiences alike.
- Q: What is the lifespan of steel angles?
- The lifespan of steel angles can vary depending on several factors such as the quality of the steel, the environmental conditions it is exposed to, and the level of maintenance it receives. However, with proper care and maintenance, steel angles can last for several decades or even longer.
- Q: How do steel angles perform in earthquake-prone regions?
- Steel angles perform well in earthquake-prone regions due to their high strength and flexibility. They are commonly used in structural systems to resist lateral forces and provide stability during seismic events. The angular shape of the steel angles helps in distributing the seismic forces effectively, reducing the risk of structural failure. Additionally, steel's ductility allows it to bend without fracturing, further enhancing its performance in earthquake-prone areas.
- Q: Can steel angles be used for staircases?
- Yes, steel angles can be used for staircases. Steel angles are commonly used as structural supports in construction, including for staircases. They provide strength and stability to the staircase structure and can be designed to meet specific load-bearing requirements.
Send your message to us
JIS SS400 Hot Rolled Angle Steel
- Loading Port:
- China Main Port
- Payment Terms:
- TT or LC
- Min Order Qty:
- -
- Supply Capability:
- -
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords