• Inside Solar Inverter cnbm-5000TL Grid-Tie Solar Inverter with Energy Storage Hybrid Solar Inverter System 1
  • Inside Solar Inverter cnbm-5000TL Grid-Tie Solar Inverter with Energy Storage Hybrid Solar Inverter System 2
  • Inside Solar Inverter cnbm-5000TL Grid-Tie Solar Inverter with Energy Storage Hybrid Solar Inverter System 3
Inside Solar Inverter cnbm-5000TL Grid-Tie Solar Inverter with Energy Storage Hybrid Solar Inverter

Inside Solar Inverter cnbm-5000TL Grid-Tie Solar Inverter with Energy Storage Hybrid Solar Inverter

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
1000 watt
Supply Capability:
100000 watt/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

Introduction

 CNBM-1000TL/1500TL/2000TL/3000TL/4000TL/4400TL/5000TL

Pure sine wave output

Microprocessor controlled to guarantee stable charging system

Multiple operations: Grid tie, Off grid, and grid tie with backup

Built-in MPPT solar charger

LCD display panel for comprehensive information

Multiple communication

Green substitution for generators

User adjustable charging current up to 25A

Maximum efficiency of 97.9% and wide

input voltage range

Wide MPPT voltage

Internal DC switch

Transformerless GT topology

Compact design

MTL – String

Multi-MPPT

Certificate: CE, VDE 0126-1-1,

DK5940, G83/1-1, G59/2, RD1663,

EN50438, VDE-AR-N4105, CEI-021,

IEC-62109, ENEL-Guide, UL1741,

UL1998, IEEE1547, CSA

Warranty: 5/10 years

 

Features

 

Maximum efficiency of 96.9% and wide input voltage range

Internal DC switch

MTL-String

Bluetooth/RF technology /wifi

Transformerless GT topology

5 years warranty(10years as optional)

Images

 

CNBM-5000TL Grid-tie Solar Inverter with Energy Storage Hybrid Solar Inverter

CNBM-5000TL Grid-tie Solar Inverter with Energy Storage Hybrid Solar Inverter

CNBM-5000TL Grid-tie Solar Inverter with Energy Storage Hybrid Solar Inverter

Sepecification

 

 

CNBM-5000TL Grid-tie Solar Inverter with Energy Storage Hybrid Solar Inverter

CNBM-5000TL Grid-tie Solar Inverter with Energy Storage Hybrid Solar Inverter

 

FAQ

Q1: How to choose a right inverter?

A1:Tell us your demand, then our sales will recommend a suitable inverter to you. 

Q2: What's the different between inverter and solar inverter?

A2:  Inverter is only accept AC input, but solar inverter not only accept AC input but also can connect with solar panel to accept PV input, it more save power.  

 

Q3: How about the delivery time?

A3:  7 days for sample; 25 days for bulk order.

Q4: What is the warranty of inverter?

A4: 5/10 years warranty on CNBM-Solar product.

 

Q5: How to solve the technical problem?

A5: 24 hours after-service consultancy just for you and to make your problem to solve easily.

 

Q6: What is the lead time?

A6: One day after reveiving the payment.

 

Q7: Can I have a sample order?

A7: Yes, we welcome sample order to test and check quality. Mixed samples are acceptable.

 

Q8: How do you ship the goods and how long does it take arrive?

A8: Express (DHL,UPS,Fedex or TNT), Air or Sea shipment is available depends on your need. It usually takes 3-5 days to arrive except Sea transportation.


 

Q: Can a solar inverter be used with a remote monitoring system?
Yes, a solar inverter can be used with a remote monitoring system. In fact, many solar inverters are designed to be compatible with remote monitoring systems, allowing users to monitor their solar energy production, system performance, and troubleshoot any issues remotely. This enables better control and management of the solar power system, ensuring optimal efficiency and performance.
Q: How does a solar inverter handle voltage fluctuations from the grid?
A solar inverter handles voltage fluctuations from the grid by constantly monitoring the voltage and adjusting its output accordingly. When the grid voltage increases or decreases, the inverter's control system regulates its own output voltage to match the changes, ensuring a stable and consistent supply of electricity is fed into the grid. This helps to maintain grid stability and protect the connected devices from potential damage caused by voltage fluctuations.
Q: What are the advantages of using a three-phase solar inverter?
There are several advantages of using a three-phase solar inverter. Firstly, it allows for a more balanced distribution of power between the three phases, resulting in a more efficient use of electricity. This can lead to increased energy production and savings. Additionally, three-phase solar inverters provide a higher power output compared to single-phase inverters, making them suitable for larger installations. They also offer enhanced voltage stability and improved grid integration, ensuring a reliable and stable power supply. Overall, the use of a three-phase solar inverter can optimize energy generation, improve system performance, and provide greater flexibility for solar installations.
Q: Can a solar inverter be used with building-integrated photovoltaic systems?
Yes, a solar inverter can be used with building-integrated photovoltaic (BIPV) systems. Solar inverters are an essential component of any photovoltaic system, including BIPV systems. They are responsible for converting the direct current (DC) generated by the solar panels into alternating current (AC) that can be used to power electrical devices in buildings. Therefore, a solar inverter is necessary to ensure the seamless integration of BIPV systems with the electrical grid and the effective utilization of solar energy.
Q: What are the key features to consider when purchasing a solar inverter?
When purchasing a solar inverter, some key features to consider are the capacity and efficiency of the inverter, its compatibility with your solar panel system, the type of inverter technology used (such as string or microinverters), the warranty and reliability of the brand, and any additional features or smart capabilities offered by the inverter.
Q: Can a solar inverter be used with different types of tracking algorithms?
Yes, a solar inverter can generally be used with different types of tracking algorithms. Solar inverters are designed to convert the direct current (DC) generated by solar panels into alternating current (AC) for use in homes or businesses. The tracking algorithms, such as single-axis or dual-axis tracking, are responsible for optimizing the output of solar panels by adjusting their tilt and orientation according to the sun's position. Solar inverters are typically compatible with various tracking algorithms, allowing flexibility in system design and maximizing energy generation.
Q: How does a solar inverter handle voltage dips and swells?
A solar inverter is designed to handle voltage dips and swells by constantly monitoring the grid voltage. When a dip or swell occurs, the inverter's control system adjusts the output voltage accordingly to maintain a stable output. This is done through the use of power electronics and control algorithms that regulate the voltage and frequency of the inverter's output.
Q: How do you calculate the power loss in a solar inverter?
To calculate the power loss in a solar inverter, you need to determine the difference between the input power and the output power. Subtracting the output power from the input power will give you the power loss.
Q: Can a solar inverter be used with a solar-powered water desalination system?
Yes, a solar inverter can be used with a solar-powered water desalination system. A solar inverter is responsible for converting the DC power generated by solar panels into AC power that can be used by electrical devices. In the case of a solar-powered water desalination system, the solar panels generate DC power, which is then converted into AC power by the inverter to run the system's pumps, filters, and other electrical components. This allows the system to operate efficiently using clean and renewable energy from the sun.
Q: Can a solar inverter be used in areas with high electromagnetic radiation?
Indeed, a solar inverter is suitable for use in regions with abundant electromagnetic radiation. Nonetheless, it is crucial to acknowledge that the inverter's performance and reliability could potentially be impacted by the presence of such radiation. The existence of elevated radiation levels has the potential to induce electromagnetic interference (EMI), thereby causing disruptions in the inverter's operation and leading to decreased efficiency or even complete failure. Consequently, it is highly recommended to adopt necessary precautions, including implementing proper grounding and shielding techniques, as well as selecting inverters equipped with robust EMI protection mechanisms when installing solar inverters in areas with high electromagnetic radiation. Furthermore, seeking guidance from experts or manufacturers who possess knowledge regarding specific solar inverter models designed to endure and excel in environments characterized by high electromagnetic radiation is strongly advised.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords