High Tensile Deformed Bar Grade E40_E60_E75
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 50 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specification
High Tensile Deformed Bar Grade E40_E60_E75
Details of High Tensile Deformed Bar Grade E40_E60_E75
Name | Deformed Bar |
Shape | Round Bar |
Standard | 1.GB1499.2-2007, HRB335, HRB400E 2. ASTM A615 Gr.40, Gr.60 3.BS4449/1997 |
Diameter | 6mm-50mm |
Length | 6m, 8m, 9m,12m as standard or as request |
Test | SGS/UT 100% Elements Testing |
Certificate: | ISO/Mill Certificate |
Service: | 24 hours online service / |
more than 20 years trading and manufacture | |
Quality Assurance: | the third party inspection, such as SGS, BV, TUV…etc. is acceptable |
Packaging Details: | Seaworthy Packaging or as per customer's packing instruction |
Specification of High Tensile Deformed Bar Grade E40_E60_E75
Standard | Grade | Yield Strength Mpa | Tensile Strength | Elongation% |
BS4449:1997 | 250 | 250 | 295 | 22 |
460A | 460 | 485 | 12 | |
460B | 460 | 500 | 15 | |
GB1499.2-2007 | HRB335/335E | 335 | 455 | 17 |
HRB400/400E | 400 | 540 | 17 | |
HRB500/500E | 500 | 630 | 16 | |
ASTM A615 & A615M-04a | GRADE40 | 280 | 420 | 12 |
GRADE60 | 420 | 620 | 9 | |
GRADE75 | 520 | 690 | 7 | |
JIS G3112-2004 | SD295A | ≥ 295 | 440-600 | 17 |
SD295B | 295-390 | ≥ 440 | 17 | |
SD345 | 345-440 | ≥490 | 19 | |
SD390 | 390-510 | 560 | 17 | |
SD490 | 490-625 | ≥ 620 | 13 |
Size | WEIGHT | WEIGHT | QUANTITY | ||
LENGTH 6M | LENGTH 12M | LENGTH 6M | LENGTH 12M | ||
6 | 0.222 | 1.332 | 2.664 | 751 | 375 |
8 | 0.395 | 2.37 | 4.74 | 422 | 211 |
10 | 0.617 | 3.702 | 7.404 | 270 | 135 |
12 | 0.888 | 5.328 | 10.656 | 188 | 94 |
14 | 1.21 | 7.26 | 14.52 | 138 | 69 |
16 | 1.58 | 9.48 | 18.96 | 106 | 53 |
18 | 2 | 12 | 24 | 83 | 42 |
20 | 2.47 | 14.82 | 29.64 | 67 | 34 |
22 | 2.98 | 17.88 | 35.76 | 56 | 28 |
25 | 3.85 | 23.1 | 46.2 | 43 | 22 |
28 | 4.83 | 28.98 | 57.96 | 35 | 17 |
32 | 6.31 | 37.86 | 75.72 | 26 | 13 |
36 | 7.99 | 47.94 | 95.88 | 21 | 10 |
40 | 9.87 | 59.22 | 118.44 | 17 | 8 |
50 | 15.42 | 92.52 | 185.04 | 11 | 5 |
CNBM Introduction of High Tensile Deformed Bar Grade E40_E60_E75 Supplier
CNBM International Corporation is the most import and export platform of CNBM group(China National Building Material Group Corporation) ,which is a state-owned enterprise, ranked in 270th of Fortune Global 500 in 2015.
With its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high quality series of refractories as well as technical consultancies and logistics solution.
Packaging & Delivery of High Tensile Deformed Bar Grade E40_E60_E75
Packaging Detail | Sea worthy packing /as per customer's packing instruction |
Delivery Detail | 15 ~ 40 days after receiving the deposit |
Products Show
FAQ:
Are you a trading company or manufacturer? | Manufacturer |
What’s the MOQ? | 3 metric ton |
What’s your delivery time? | 15-35 days after downpayment received |
Do you Accept OEM service? | Yes |
what’s your delivery terms? | FOB/CFR/CIF |
What's the Payment Terms? | 30% as deposit,70% before shipment by T/T |
Western Union acceptable for small amount. | |
L/C acceptable for large amount. | |
Scrow ,Paybal,Alipay are also ok | |
Why choose us? | Chose happens because of quality, then price, We can give you both. Additionally, we can also offer professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposals. |
What's your available port of Shipment? | Main Port, China |
What’s your featured services? | Our service formula: good quality+ good price+ good service=customer's trust
|
Where are your Market? | Covering more than 160 countries in the world |
- Q: How does special steel perform in cryogenic ductility?
- Special steel generally performs well in cryogenic ductility. Cryogenic ductility refers to the ability of a material to maintain its strength and flexibility at extremely low temperatures. Special steels are often specifically engineered to withstand harsh conditions, including cryogenic temperatures, making them suitable for use in applications such as liquefied natural gas (LNG) storage tanks, aerospace components, and superconductors. One of the main reasons special steel excels in cryogenic ductility is its composition. Special steels are typically alloyed with elements such as nickel, chromium, and molybdenum, which enhance their mechanical properties and resistance to low temperatures. These alloying elements provide special steel with increased strength, toughness, and resistance to brittle fracture, even in extremely cold environments. Furthermore, special steels undergo rigorous testing and quality control measures to ensure their performance in cryogenic conditions. This includes testing for parameters such as impact toughness, fracture toughness, and notch toughness, which are crucial for evaluating a material's ability to resist brittle failure at low temperatures. In addition to its composition and testing, the manufacturing processes used for special steel also contribute to its excellent cryogenic ductility. Special steels are often produced using methods like vacuum induction melting and controlled cooling, which help eliminate impurities and improve the material's microstructure. This refined microstructure enhances the steel's ductility, allowing it to maintain its mechanical properties even at cryogenic temperatures. Overall, special steel demonstrates exceptional performance in cryogenic ductility due to its carefully designed composition, stringent testing, and advanced manufacturing processes. These factors make it a reliable and preferred choice for various industries that require materials to withstand extreme cold conditions while maintaining their strength and flexibility.
- Q: What are the different forging techniques used for special steel?
- Some of the different forging techniques used for special steel include open die forging, closed die forging, and ring rolling. Open die forging involves shaping the steel by hammering it between flat dies or anvils. Closed die forging, also known as impression die forging, utilizes dies that contain specific shapes to mold the steel into the desired form. Ring rolling is a technique used to produce seamless rings by shaping the steel through a combination of axial compression and radial expansion. These forging techniques allow for the production of high-quality and complex special steel components with desired properties and shapes.
- Q: What are the main characteristics of heat-resistant steel forgings?
- Heat-resistant steel forgings have several main characteristics that make them suitable for high-temperature applications. Firstly, they have excellent resistance to oxidation and corrosion, which allows them to maintain their mechanical properties even at elevated temperatures. This resistance is achieved through the addition of alloying elements such as chromium, nickel, and molybdenum, which form a protective oxide layer on the surface of the steel. Secondly, heat-resistant steel forgings exhibit high strength and toughness at high temperatures. This is crucial in applications where the material is subjected to mechanical stress and thermal cycling, such as in gas turbines, power plants, and aerospace engines. The combination of high strength and toughness ensures that the forgings can withstand the harsh operating conditions without deformation or failure. Another important characteristic of heat-resistant steel forgings is their ability to retain their hardness and dimensional stability even after prolonged exposure to high temperatures. This is achieved through a combination of careful alloying and heat treatment processes, which optimize the microstructure of the steel. The resulting material has a fine grain structure and a high degree of uniformity, which enhances its resistance to thermal fatigue and creep. Furthermore, heat-resistant steel forgings have good thermal conductivity, which allows for efficient heat transfer and dissipation. This is particularly important in applications where heat is generated and needs to be managed effectively to prevent overheating and damage to surrounding components. Lastly, heat-resistant steel forgings can be easily machined and fabricated into complex shapes, making them versatile and suitable for a wide range of applications. They can be forged, machined, and welded without any significant loss in their mechanical properties, making them ideal for manufacturing components with intricate designs and high precision requirements. In conclusion, the main characteristics of heat-resistant steel forgings include excellent resistance to oxidation and corrosion, high strength and toughness at high temperatures, dimensional stability and hardness retention, good thermal conductivity, and ease of machining and fabrication. These characteristics make heat-resistant steel forgings essential in industries that require reliable and durable materials in extreme heat conditions.
- Q: How does wear-resistant steel protect against abrasive wear?
- Wear-resistant steel protects against abrasive wear by having a high hardness and toughness, which allows it to withstand the abrasive forces and prevent material loss or surface damage. The steel's composition and heat treatment provide it with enhanced resistance to abrasive particles, reducing wear and extending the lifespan of the material.
- Q: What is the role of boron in special steel alloys?
- Boron plays a crucial role in special steel alloys, particularly in enhancing their mechanical properties and overall performance. One of the primary functions of boron is as a hardenability agent, meaning it improves the hardness and strength of the steel. This is achieved through the formation of boride particles, which act as strengthening agents within the microstructure. Additionally, boron aids in the refinement of the grain structure of steel, resulting in improved toughness and resistance to cracking. It promotes the formation of fine-grained microstructures, which in turn increase the steel's ability to withstand high temperatures, pressure, and wear. Moreover, boron assists in the solidification process of steel, reducing the risk of hot cracking during casting or welding. It lowers the melting point of steel, allowing for better fluidity and improved flowability during manufacturing processes. Furthermore, boron can also enhance the machinability of steel alloys, making them easier to work with and reducing tool wear. Overall, the addition of boron to special steel alloys significantly contributes to their strength, hardness, toughness, and resistance to various forms of degradation. Its role is vital in optimizing the performance and durability of these alloys in demanding applications such as automotive components, aerospace structures, and industrial machinery.
- Q: How is alloy steel used in the production of gears and shafts?
- Alloy steel is used in the production of gears and shafts due to its high strength and durability. By adding different alloying elements such as chromium, nickel, and molybdenum, the steel's properties can be enhanced to withstand heavy loads, high temperatures, and wear. This makes alloy steel ideal for manufacturing gears and shafts that need to transmit power, resist deformation, and maintain their integrity under demanding conditions.
- Q: What are the different corrosion protection methods used for special steel?
- There are several corrosion protection methods used for special steel, including coating with anti-corrosive paints or sealants, galvanizing with zinc or other metals, applying sacrificial anodes, using corrosion inhibitors, and employing cathodic protection techniques such as impressed current or sacrificial anode systems.
- Q: What are the common applications of special steel?
- Special steel, also known as alloy steel, finds wide usage across various industries owing to its distinct properties and advantages. Some prevalent applications of special steel are as follows: 1. Automotive industry: In the automotive sector, special steel is extensively employed for the production of engine components such as crankshafts, camshafts, connecting rods, and valves. Its exceptional strength, durability, and resistance to wear render it ideal for enduring the rigorous conditions within internal combustion engines. 2. Aerospace industry: The aerospace industry heavily relies on special steel for manufacturing critical components like landing gear, turbine blades, and structural parts. Its remarkable strength-to-weight ratio, excellent heat resistance, and ability to withstand extreme conditions are indispensable in ensuring the safety and reliability of aircraft. 3. Energy industry: The energy sector, particularly power generation, heavily depends on special steel. It is used in the manufacturing of turbine blades, steam pipes, pressure vessels, and other power plant components. Its capacity to endure high temperatures, pressure, and corrosive environments makes it suitable for these demanding applications. 4. Oil and gas industry: Within the oil and gas sector, special steel is extensively utilized in the production of pipes, valves, fittings, and drilling equipment. Its corrosion resistance and high strength guarantee the secure transportation and extraction of oil and gas in harsh environments. 5. Construction industry: Special steel is commonly employed in the construction sector for various purposes. It is used in the manufacturing of reinforcement bars, structural components, and fasteners. Its high tensile strength, durability, and resistance to corrosion make it an ideal choice for withstanding the loads and environmental conditions encountered in construction projects. 6. Tool and die making: Special steel is widely employed in the production of tools and dies. Its high hardness, wear resistance, and toughness make it suitable for manufacturing cutting tools, molds, dies, and other precision components used across various industries. 7. Medical industry: In the medical sector, special steel is used for the production of surgical instruments, implants, and medical devices. Its biocompatibility, corrosion resistance, and sterilization capabilities make it suitable for these critical applications. In conclusion, special steel finds extensive applications in the automotive, aerospace, energy, oil and gas, construction, tool and die making, and medical industries due to its unique properties and ability to withstand demanding conditions.
- Q: What are the applications of special steel in the aerospace industry?
- Special steel has numerous applications in the aerospace industry due to its unique properties. It is extensively used in the manufacturing of aircraft components such as engine parts, landing gears, and structural elements. Special steel offers high strength, excellent corrosion resistance, and exceptional heat resistance, making it ideal for withstanding extreme conditions experienced during flight. Additionally, its lightweight nature helps reduce the overall weight of the aircraft, leading to improved fuel efficiency and performance. Overall, special steel plays a crucial role in enhancing the safety, durability, and efficiency of aerospace equipment.
- Q: How do alloying elements affect the properties of special steel?
- The properties of special steel are greatly influenced by alloying elements. By incorporating specific elements into the steel composition, it is possible to achieve a variety of desirable characteristics. To begin with, the addition of alloying elements can enhance the steel's strength and hardness. For instance, chromium, nickel, and molybdenum can improve the steel's resistance to deformation and overall toughness. This is especially vital in situations where the steel needs to withstand high temperatures, pressure, or mechanical stress. Furthermore, alloying elements can boost the corrosion resistance of special steel. Elements like chromium, nickel, and copper create a protective oxide layer on the steel's surface, preventing rusting or corrosion. This is of particular importance in industries such as marine, oil and gas, and chemical processing, where exposure to corrosive environments is common. Moreover, alloying elements can influence the steel's weldability, machinability, and heat treatability. For example, manganese and silicon can enhance the weldability of steel, facilitating the joining of different components. On the other hand, vanadium and tungsten can enhance the steel's ability to maintain its hardness even when subjected to high temperatures, making it suitable for applications involving heat treatment. Additionally, alloying elements can affect the electrical and magnetic properties of steel. Elements like nickel and cobalt can improve the steel's magnetic properties, making it suitable for use in electrical transformers or magnetic devices. Conversely, aluminum and titanium can enhance the steel's electrical conductivity, making it ideal for electrical wiring or conductive components. In conclusion, alloying elements have a significant impact on the properties of special steel. They can enhance its strength, hardness, corrosion resistance, weldability, heat treatability, electrical conductivity, and magnetic properties. By carefully selecting and controlling the alloying elements, manufacturers can customize the steel's properties to meet the specific requirements of different industries and applications.
Send your message to us
High Tensile Deformed Bar Grade E40_E60_E75
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 50 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords