• High Quality ASTM A53 ERW Welded Steel Pipe From CNBM System 1
  • High Quality ASTM A53 ERW Welded Steel Pipe From CNBM System 2
  • High Quality ASTM A53 ERW Welded Steel Pipe From CNBM System 3
  • High Quality ASTM A53 ERW Welded Steel Pipe From CNBM System 4
  • High Quality ASTM A53 ERW Welded Steel Pipe From CNBM System 5
High Quality ASTM A53 ERW Welded Steel Pipe From CNBM

High Quality ASTM A53 ERW Welded Steel Pipe From CNBM

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
50 m.t.
Supply Capability:
500 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

 

 

ERW Welded Steel Pipes

 

Application of High Quality ASTM A53 ERW Welded Steel Pipe

It is widely applied to line pipe and casing and tubing in oil transportation and casing field, and it is used in Low, high pressure liquid and gassy transportation and it is also good Structure pipe (for furniture, window, door, building , bridge, mechanical etc).

Package: bundles with anti-rust painting and with plastic caps

 

Standard of High Quality ASTM A53 ERW Welded Steel Pipe

API SPEC 5L, API SPEC 5CT, ASTM A53, GB/T9711.1

 

SteelGrade of High Quality ASTM A53 ERW Welded Steel Pipe

API SPEC 5L: B, X42, X46, X52, X56, X60, X65

API SPEC 5CT: J55, K55, N80, L80-1

ASTM A53: A, B, C

GB/T9711.1:L242、L290、L320、L360、L390、L415、L450

 

Sizes of pipes of High Quality ASTM A53 ERW Welded Steel Pipe

*Remark: Besides below sizes, we also can arrange production based on requirement of customers

 

 

 

OD

WT

WEIGHT

INCH

MM

SCH

MM

INCH

KG/M

LB/INCH

1 1/2”

48.3

STD-40

3.68

0.145

4.09

2.75

1 1/2”

48.3

XS-80

5.08

0.2

5.47

3.68

2”

60.3

STD-40

3.91

0.154

5.49

3.69

2”

60.3

XS-80

5.54

0.218

7.56

5.08

2 1/2”

73

STD-40

5.16

0.203

8.72

5.86

2 1/2”

73

XS-80

7.01

0.276

11.52

7.74

3”

88.9

STD-40

5.49

0.216

11.41

7.67

3”

88.9

XS-80

7.62

0.3

15.43

10.37

3 1/2”

101.6

STD-40

5.74

0.226

13.71

9.21

3 1/2”

101.6

XS-80

8.08

0.318

18.83

12.65

4”

114.3

STD-40

6.02

0.237

16.24

10.91

4”

114.3

XS-80

8.56

0.337

22.55

15.15

5”

141.3

STD-40

6.55

0.258

21.99

14.78

5”

141.3

XS-80

9.53

0.375

31.28

21.02

6”

168.3

STD-40

7.11

0.28

28.55

19.19

6”

168.3

XS-80

10.97

0.432

42.99

28.89

8”

219.1

STD-40

8.18

0.322

42.98

28.88

8”

219.1

XS-80

12.7

0.5

65.3

43.88

10”

273

STD-40

9.27

0.365

60.9

40.92

10”

273

80

15.09

0.594

96.95

65.15

12”

323.8

STD

9.53

0.375

74.61

50.13

12”

323.8

40

10.31

0.406

80.51

54.1

12”

323.8

XS

12.7

0.5

98.42

66.14

12”

323.8

80

17.48

0.688

133.38

89.63

14”

355.6

40

11.13

0.438

95.51

64.18

14”

355.6

XS

12.7

0.5

108.48

72.9

14”

355.6

80

19.05

0.75

159.71

107.32

16”

406.4

XS-40

12.7

0.5

124.55

83.69

18”

457

STD

9.53

0.375

106.23

71.38

18”

457

40

14.27

0.562

157.38

105.75

18”

457

80

23.83

0.938

257.13

172.78

20”

508

40

15.09

0.594

185.28

124.5

20”

508

80

26.19

1.031

314.33

211.22

 

 

Standard: GB/9711.1

 

Mechanical Properties of High Quality ASTM A53 ERW Welded Steel Pipe

 

 

 

Standard

Grade

(MPa)

(MPa)

Min(%)

Yield strength

Tensile Strength

Elongation

GB/T9711.1

L245

≥245

≥415

21

L290

≥290

≥415

21

L320

≥320

≥435

20

L360

≥360

≥460

19

L390

≥390

≥490

18

L415

≥415

≥520

17

L450

≥450

≥535

17

L485

≥485

≥570

17

 

 

Chemical Composition(%) of High Quality ASTM A53 ERW Welded Steel Pipe

 

 

 

Standard

Grade

C

Mn

P

S

Max

Max

Max

Max

GB/T9711.1

L245

0.26

0.15

0.030

0.030

L290

0.28

1.25

0.030

0.030

L320, L360

0.30

1.25

0.030

0.030

L390, L415

0.26

1.35

0.030

0.030

L450

0.26

1.40

0.030

0.030

L485

0.23

1.60

0.025

0.030

 

 

Standard: GB/9711.2

 

Mechanical Properties of High Quality ASTM A53 ERW Welded Steel Pipe

 

 

 

Standard

Grade

(MPa)

Yield strength

(MPa)

Tensile Strength

Min(%)

Elongation

GB/T9711.2

Rt0.5Min

Rt0.5Max

RmMin

Rt0.5/Rm Max

L245

 

245

 

440

0.80

 

22

L245

0.85

L290

 

290

 

440

0.80

21

L290

0.85

L360

 

360

 

510

0.85

 

20

L360

0.85

L415

 

415

 

565

0.85

 

18

L415

0.85

L450

450

570

535

0.87

18

L485

485

605

570

0.90

18

 

 

Chemical Composition (%) of High Quality ASTM A53 ERW Welded Steel Pipe

 

 

 

Standard

Grade

C

Mn

P

S

V

Nb

Ti

CEV

Max

Max

Max

Max

Max

Max

Max

Max

GB/T9711.2

L245NB

0.16

1.1

0.025

0.020

-

-

-

0.42

L290NB

0.17

1.2

0.025

0.020

0.05

0.05

0.04

0.42

L360NB

0.20

1.6

0.025

0.020

0.10

0.05

0.04

0.45

L415NB

0.21

1.6

0.025

0.020

0.15

0.05

0.04

-

L245NB, L290NB

 

0.16

 

1.5

0.025

0.020

 

0.04

 

0.04

 

-

 

0.4

L360NB

0.16

1.6

0.025

0.020

0.05

0.05

0.04

0.41

L415NB

0.16

1.6

0.025

0.020

0.08

0.05

0.06

0.42

L450NB

0.16

1.6

0.025

0.020

0.10

0.05

0.06

0.43

L485NB

0.16

1.7

0.025

0.020

0.10

0.06

0.06

0.43

 

 

Standard: ASTM A53

 

Mechanical Properties of High Quality ASTM A53 ERW Welded Steel Pipe

 

 

 

Standard

Grade

(MPa)

(MPa)

Yield strength

Tensile Strength

ASTM A53M

A

205

330

B

240

415

 

 

Chemical Composition(%) of High Quality ASTM A53 ERW Welded Steel Pipe

 

 

 

Standard

Grade

C

Mn

P

S

V

Ni

Cu

Cr

Mo

Max

Max

Max

Max

Max

Max

Max

Max

Max

ASTM A53M

A

0.25

0.95

0.05

0.045

0.08

0.4

0.5

0.4

0.15

B

0.30

1.20

0.05

0.045

0.08

0.4

0.5

0.4

0.15

 

Q:What are the different types of fittings used with steel pipes?
There are several different types of fittings that are commonly used with steel pipes. These fittings are designed to connect, control, or change the direction of flow in a piping system. Some of the different types of fittings used with steel pipes include: 1. Elbow fittings: These fittings are used to change the direction of flow in a piping system. They come in various angles, such as 45 degrees or 90 degrees, and are commonly used to navigate around obstacles or create bends in the pipe. 2. Tee fittings: Tee fittings are used to create a branch or split in a piping system. They have three openings, with one being perpendicular to the other two. This allows for the connection of two pipes at a 90-degree angle. 3. Coupling fittings: Couplings are used to connect two pipes of the same size together. They are usually threaded and can be easily tightened or removed using a wrench. Couplings are commonly used in applications where pipes need to be joined or repaired. 4. Reducer fittings: Reducers are used to connect pipes of different sizes together. They have one end that is larger in diameter and another end that is smaller. Reducers are often used to transition between pipe sizes or to adapt to different equipment or fittings. 5. Flange fittings: Flanges are used to connect pipes, valves, or other equipment to create a secure and leak-proof connection. They consist of a flat, circular plate with holes for bolts or screws to fasten the flange to the pipe. Flange fittings are commonly used in applications where frequent disassembly and reassembly is required. 6. Union fittings: Union fittings are used to join two pipes together in a manner that allows for easy disconnection. They consist of three parts: a nut, a female end, and a male end. Union fittings are often used in applications where periodic maintenance or repairs are necessary. 7. Cap fittings: Cap fittings are used to seal the end of a pipe. They are typically threaded and can be easily screwed onto the end of the pipe. Cap fittings are commonly used in applications where pipes need to be temporarily closed off or protected. These are just a few examples of the different types of fittings used with steel pipes. The specific type of fitting required will depend on the application, the size and material of the pipe, and the desired functionality of the piping system.
Q:How are steel pipes manufactured?
Steel pipes are manufactured through a process called pipe manufacturing, which involves several steps. First, raw materials such as steel plates or coils are formed into cylindrical shapes. These shapes are then welded together to create a seamless or welded pipe. After welding, the pipes undergo heat treatment to improve their mechanical properties. Finally, the pipes are cut, inspected, and coated with protective layers before being ready for various applications.
Q:Are steel pipes resistant to fire?
Yes, steel pipes are highly resistant to fire due to their high melting point and ability to withstand intense heat and flames.
Q:How are steel pipes insulated to prevent freezing?
Steel pipes are insulated to prevent freezing by wrapping them with insulation materials such as foam or fiberglass, which helps to maintain the temperature of the pipe and prevents the transfer of cold air. Additionally, pipes can be buried underground below the frost line to protect them from freezing temperatures.
Q:Can seamless steel pipe and ordinary steel pipe be welded?
If your project is a seamless steel pipe, so theoretically, you put the tube with connected is not used.But the actual engineering operation, design drawings will be put on the normal need to improve the requirements of the drawings to the actual requirements, so if is the need of seamless steel pipe, welded pipe in the end so can you see yourself.
Q:Can steel pipes be used for conveying corrosive substances?
Steel pipes can be used for conveying corrosive substances, but it is important to choose the right type of steel and consider additional protective measures. Stainless steel pipes, for example, are highly resistant to corrosion and can handle a wide range of corrosive substances. However, it is crucial to consider the specific corrosive properties of the substance being conveyed and the concentration levels. In some cases, additional protective coatings or linings may be necessary to prevent corrosion and ensure the longevity of the steel pipes. Regular maintenance and inspection are also essential to detect and address any signs of corrosion to prevent leaks or failures in the piping system. Overall, steel pipes can be used for conveying corrosive substances, but proper material selection, protective measures, and maintenance are vital to ensure safe and efficient operations.
Q:What are the different types of coatings used on steel pipes?
There are several types of coatings that are commonly used on steel pipes to enhance their durability and protect them from corrosion. Some of the most common types of coatings include: 1. Fusion-Bonded Epoxy (FBE) Coating: This coating is applied to the steel pipe through a process of heating and melting the epoxy powder, which then fuses to the surface. FBE coatings provide excellent corrosion resistance and are commonly used in water pipelines and oil and gas industries. 2. Polyethylene (PE) Coating: PE coatings are applied to steel pipes using a similar process as FBE coatings. PE coatings provide a protective layer that is resistant to moisture, chemicals, and abrasion. They are commonly used in gas pipelines and underground water pipelines. 3. Polypropylene (PP) Coating: PP coatings are similar to PE coatings in terms of their application process and protective qualities. However, PP coatings offer enhanced resistance to higher temperatures, making them suitable for applications such as chemical processing plants and refineries. 4. Concrete Weight Coating (CWC): CWC is a special coating that involves applying a layer of concrete to the steel pipe. This coating provides additional weight to the pipe, making it more stable and resistant to buoyancy in underwater or submerged applications. 5. Zinc Coating: Zinc coatings, such as hot-dip galvanizing, involve immersing the steel pipe in a bath of molten zinc. This process creates a protective layer of zinc on the surface of the pipe, offering excellent corrosion resistance. Zinc coatings are commonly used in outdoor applications, such as fencing, guardrails, and water pipelines. 6. Bituminous Coating: Bituminous coatings involve applying a layer of bitumen or asphalt to the steel pipe. This coating provides excellent resistance to water and chemicals, making it suitable for underground pipelines and structures. These are just a few examples of the different types of coatings used on steel pipes. The choice of coating depends on factors such as the intended application, environmental conditions, and the level of corrosion resistance required.
Q:Can steel pipes be used for underground geothermal systems?
Yes, steel pipes can be used for underground geothermal systems. Steel pipes are commonly used in geothermal applications due to their durability, strength, and resistance to corrosion. They can withstand high temperatures and pressures associated with geothermal systems, making them suitable for underground installations. Additionally, steel pipes are readily available and cost-effective, making them a popular choice in geothermal projects.
Q:How are steel pipes used in the construction of bridges?
Steel pipes are commonly used in the construction of bridges as they provide structural support and stability. They are often used as piers or columns to bear the weight of the bridge deck and transfer the load to the foundation. Additionally, steel pipes are used for the construction of bridge railings and barriers, providing safety for pedestrians and vehicles. Overall, steel pipes offer durability, strength, and flexibility, making them an essential component in bridge construction.
Q:How do steel pipes handle water erosion?
Steel pipes are highly resistant to water erosion due to their robust and durable nature. The smooth surface of steel pipes minimizes the formation of rust and corrosion, preventing water erosion from occurring. Additionally, steel pipes can withstand high water pressure and turbulent flow, further enhancing their ability to handle water erosion effectively.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords