• High Quality ASTM A53 ERW Welded Steel Pipe From CNBM System 1
  • High Quality ASTM A53 ERW Welded Steel Pipe From CNBM System 2
  • High Quality ASTM A53 ERW Welded Steel Pipe From CNBM System 3
  • High Quality ASTM A53 ERW Welded Steel Pipe From CNBM System 4
  • High Quality ASTM A53 ERW Welded Steel Pipe From CNBM System 5
High Quality ASTM A53 ERW Welded Steel Pipe From CNBM

High Quality ASTM A53 ERW Welded Steel Pipe From CNBM

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
50 m.t.
Supply Capability:
500 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

 

 

ERW Welded Steel Pipes

 

Application of High Quality ASTM A53 ERW Welded Steel Pipe

It is widely applied to line pipe and casing and tubing in oil transportation and casing field, and it is used in Low, high pressure liquid and gassy transportation and it is also good Structure pipe (for furniture, window, door, building , bridge, mechanical etc).

Package: bundles with anti-rust painting and with plastic caps

 

Standard of High Quality ASTM A53 ERW Welded Steel Pipe

API SPEC 5L, API SPEC 5CT, ASTM A53, GB/T9711.1

 

SteelGrade of High Quality ASTM A53 ERW Welded Steel Pipe

API SPEC 5L: B, X42, X46, X52, X56, X60, X65

API SPEC 5CT: J55, K55, N80, L80-1

ASTM A53: A, B, C

GB/T9711.1:L242、L290、L320、L360、L390、L415、L450

 

Sizes of pipes of High Quality ASTM A53 ERW Welded Steel Pipe

*Remark: Besides below sizes, we also can arrange production based on requirement of customers

 

 

 

OD

WT

WEIGHT

INCH

MM

SCH

MM

INCH

KG/M

LB/INCH

1 1/2”

48.3

STD-40

3.68

0.145

4.09

2.75

1 1/2”

48.3

XS-80

5.08

0.2

5.47

3.68

2”

60.3

STD-40

3.91

0.154

5.49

3.69

2”

60.3

XS-80

5.54

0.218

7.56

5.08

2 1/2”

73

STD-40

5.16

0.203

8.72

5.86

2 1/2”

73

XS-80

7.01

0.276

11.52

7.74

3”

88.9

STD-40

5.49

0.216

11.41

7.67

3”

88.9

XS-80

7.62

0.3

15.43

10.37

3 1/2”

101.6

STD-40

5.74

0.226

13.71

9.21

3 1/2”

101.6

XS-80

8.08

0.318

18.83

12.65

4”

114.3

STD-40

6.02

0.237

16.24

10.91

4”

114.3

XS-80

8.56

0.337

22.55

15.15

5”

141.3

STD-40

6.55

0.258

21.99

14.78

5”

141.3

XS-80

9.53

0.375

31.28

21.02

6”

168.3

STD-40

7.11

0.28

28.55

19.19

6”

168.3

XS-80

10.97

0.432

42.99

28.89

8”

219.1

STD-40

8.18

0.322

42.98

28.88

8”

219.1

XS-80

12.7

0.5

65.3

43.88

10”

273

STD-40

9.27

0.365

60.9

40.92

10”

273

80

15.09

0.594

96.95

65.15

12”

323.8

STD

9.53

0.375

74.61

50.13

12”

323.8

40

10.31

0.406

80.51

54.1

12”

323.8

XS

12.7

0.5

98.42

66.14

12”

323.8

80

17.48

0.688

133.38

89.63

14”

355.6

40

11.13

0.438

95.51

64.18

14”

355.6

XS

12.7

0.5

108.48

72.9

14”

355.6

80

19.05

0.75

159.71

107.32

16”

406.4

XS-40

12.7

0.5

124.55

83.69

18”

457

STD

9.53

0.375

106.23

71.38

18”

457

40

14.27

0.562

157.38

105.75

18”

457

80

23.83

0.938

257.13

172.78

20”

508

40

15.09

0.594

185.28

124.5

20”

508

80

26.19

1.031

314.33

211.22

 

 

Standard: GB/9711.1

 

Mechanical Properties of High Quality ASTM A53 ERW Welded Steel Pipe

 

 

 

Standard

Grade

(MPa)

(MPa)

Min(%)

Yield strength

Tensile Strength

Elongation

GB/T9711.1

L245

≥245

≥415

21

L290

≥290

≥415

21

L320

≥320

≥435

20

L360

≥360

≥460

19

L390

≥390

≥490

18

L415

≥415

≥520

17

L450

≥450

≥535

17

L485

≥485

≥570

17

 

 

Chemical Composition(%) of High Quality ASTM A53 ERW Welded Steel Pipe

 

 

 

Standard

Grade

C

Mn

P

S

Max

Max

Max

Max

GB/T9711.1

L245

0.26

0.15

0.030

0.030

L290

0.28

1.25

0.030

0.030

L320, L360

0.30

1.25

0.030

0.030

L390, L415

0.26

1.35

0.030

0.030

L450

0.26

1.40

0.030

0.030

L485

0.23

1.60

0.025

0.030

 

 

Standard: GB/9711.2

 

Mechanical Properties of High Quality ASTM A53 ERW Welded Steel Pipe

 

 

 

Standard

Grade

(MPa)

Yield strength

(MPa)

Tensile Strength

Min(%)

Elongation

GB/T9711.2

Rt0.5Min

Rt0.5Max

RmMin

Rt0.5/Rm Max

L245

 

245

 

440

0.80

 

22

L245

0.85

L290

 

290

 

440

0.80

21

L290

0.85

L360

 

360

 

510

0.85

 

20

L360

0.85

L415

 

415

 

565

0.85

 

18

L415

0.85

L450

450

570

535

0.87

18

L485

485

605

570

0.90

18

 

 

Chemical Composition (%) of High Quality ASTM A53 ERW Welded Steel Pipe

 

 

 

Standard

Grade

C

Mn

P

S

V

Nb

Ti

CEV

Max

Max

Max

Max

Max

Max

Max

Max

GB/T9711.2

L245NB

0.16

1.1

0.025

0.020

-

-

-

0.42

L290NB

0.17

1.2

0.025

0.020

0.05

0.05

0.04

0.42

L360NB

0.20

1.6

0.025

0.020

0.10

0.05

0.04

0.45

L415NB

0.21

1.6

0.025

0.020

0.15

0.05

0.04

-

L245NB, L290NB

 

0.16

 

1.5

0.025

0.020

 

0.04

 

0.04

 

-

 

0.4

L360NB

0.16

1.6

0.025

0.020

0.05

0.05

0.04

0.41

L415NB

0.16

1.6

0.025

0.020

0.08

0.05

0.06

0.42

L450NB

0.16

1.6

0.025

0.020

0.10

0.05

0.06

0.43

L485NB

0.16

1.7

0.025

0.020

0.10

0.06

0.06

0.43

 

 

Standard: ASTM A53

 

Mechanical Properties of High Quality ASTM A53 ERW Welded Steel Pipe

 

 

 

Standard

Grade

(MPa)

(MPa)

Yield strength

Tensile Strength

ASTM A53M

A

205

330

B

240

415

 

 

Chemical Composition(%) of High Quality ASTM A53 ERW Welded Steel Pipe

 

 

 

Standard

Grade

C

Mn

P

S

V

Ni

Cu

Cr

Mo

Max

Max

Max

Max

Max

Max

Max

Max

Max

ASTM A53M

A

0.25

0.95

0.05

0.045

0.08

0.4

0.5

0.4

0.15

B

0.30

1.20

0.05

0.045

0.08

0.4

0.5

0.4

0.15

 

Q: What are the advantages of using steel pipes in irrigation systems?
There are several advantages of using steel pipes in irrigation systems. First, steel pipes are highly durable and have a long lifespan, making them a cost-effective choice as they require less frequent replacement or maintenance. Additionally, steel pipes can withstand high pressures and temperatures, making them suitable for various irrigation applications. They are also resistant to corrosion, which ensures the quality and longevity of the irrigation system. Moreover, steel pipes have a smooth interior surface, minimizing friction and allowing for efficient water flow, resulting in improved irrigation performance.
Q: Can steel pipes be used for water supply systems?
Yes, steel pipes can be used for water supply systems. Steel pipes are commonly used in water supply systems due to their durability, strength, and resistance to corrosion. However, it is important to ensure that the steel pipes are properly coated or lined to prevent any potential leaching of metals into the water supply. Additionally, regular maintenance and inspection is necessary to prevent any damage or deterioration that could affect the overall integrity of the water supply system.
Q: What are the common methods for repairing steel pipes?
Depending on the nature and extent of the damage, there are several common methods available for repairing steel pipes. One method frequently used is welding. This technique involves melting the damaged area and fusing it with a new piece of steel. Welding is typically employed for small cracks or holes in the pipe. Different welding techniques, such as shielded metal arc welding (SMAW), gas metal arc welding (GMAW), or tungsten inert gas (TIG) welding, can be utilized. Another option is pipe wrapping or bandaging. This method entails wrapping a layer of adhesive tape or resin-soaked fiberglass around the damaged section of the pipe. It is suitable for addressing small leaks or corrosion spots and serves as a temporary solution until a more permanent fix can be implemented. If the damage is extensive or the pipe suffers severe corrosion, pipe lining or relining may be necessary. This involves inserting a new pipe liner inside the existing one, effectively creating a new pipe within the old one. Various materials, such as epoxy, polyethylene, or cured-in-place pipe (CIPP), can be used for this method. Pipe lining is commonly employed for larger diameter pipes or when replacement is not feasible. In some instances, minor leaks or cracks can be repaired using pipe clamps or sleeves. These devices are designed to be clamped around the damaged section and can provide either a temporary or permanent solution, depending on the severity of the damage. Ultimately, the choice of repair method depends on factors such as the extent of the damage, accessibility of the damaged area, budget constraints, and the required long-term durability. It is advisable to consult with a professional pipe repair specialist to assess the specific situation and determine the most suitable method for repairing steel pipes.
Q: What is the weight of steel pipes?
The weight of steel pipes can vary depending on their size, length, and thickness. However, on average, steel pipes typically weigh between 1.1 to 1.5 pounds per foot.
Q: How are steel pipes used in the manufacturing of chemical storage tanks?
Steel pipes are used in the manufacturing of chemical storage tanks for their durability, strength, and resistance to corrosion. These pipes are utilized for the construction of the tank's framework, as well as for the transport of chemicals within the tank. The steel pipes provide a reliable and secure infrastructure, ensuring the safety and integrity of the chemicals stored inside the tank.
Q: How can galvanized steel tubes be painted on the surface?
The market is commonly used in alkyd iron red primer, iron red epoxy primer are not suitable for galvanized parts, otherwise it is easy to fall off. It is important to point out that the saponification of the galvanized sheet with alcohol, acid and paint will result in the failure of the coating and the damage of the original zinc coating.
Q: What is the difference between hot-dip galvanizing and electroplating for steel pipes?
Hot-dip galvanizing and electroplating are two common methods used to provide corrosion protection for steel pipes, but there are key differences between the two processes. Hot-dip galvanizing involves immersing the steel pipes into a bath of molten zinc, which forms a metallurgical bond with the steel. This results in a thick and durable zinc coating that provides excellent corrosion resistance. The process of hot-dip galvanizing creates a uniform coating that covers the entire surface of the steel pipe, including both the external and internal surfaces. This makes hot-dip galvanizing particularly effective for protecting both the inside and outside of the pipes. On the other hand, electroplating is a process that involves the deposition of a thin layer of metal onto the surface of the steel pipes using an electric current. In the case of electroplating for steel pipes, typically a layer of zinc is applied. Unlike hot-dip galvanizing, electroplating does not provide a metallurgical bond between the zinc and the steel. Instead, it creates a mechanical bond, which is not as strong or durable as the bond formed through hot-dip galvanizing. The electroplated zinc layer is thinner compared to hot-dip galvanizing, which means it may not provide the same level of corrosion protection. Another difference between hot-dip galvanizing and electroplating is the application process. Hot-dip galvanizing requires immersing the steel pipes into a bath of molten zinc, which can be a time-consuming process. Electroplating, on the other hand, involves applying the zinc coating through an electrolytic cell, which can be faster and more efficient. In summary, the main difference between hot-dip galvanizing and electroplating for steel pipes lies in the thickness and durability of the coating, as well as the bonding mechanism between the zinc and the steel. Hot-dip galvanizing provides a thicker and more durable coating with a metallurgical bond, making it more effective for long-term corrosion protection. Electroplating, on the other hand, creates a thinner coating with a mechanical bond, which may be suitable for applications requiring a less robust level of corrosion resistance.
Q: Can steel pipes be used for the construction of transmission towers?
Yes, steel pipes can be used for the construction of transmission towers. Steel pipes are commonly used in the construction industry due to their strength, durability, and ability to withstand heavy loads. They provide structural support and stability required for transmission towers, making them a suitable choice for this application.
Q: How are steel pipes used in the construction of water supply systems?
Steel pipes are commonly used in the construction of water supply systems due to their durability, strength, and resistance to corrosion. They are used for transporting water from sources such as reservoirs and wells to treatment plants, and then distributing it to homes, buildings, and other structures. Steel pipes are also used for transporting wastewater and sewage. Their ability to withstand high pressure and extreme weather conditions makes them ideal for ensuring a reliable and long-lasting water supply infrastructure.
Q: Can steel pipes be used for drainage systems?
Yes, steel pipes can be used for drainage systems. Steel pipes are strong, durable, and resistant to corrosion, making them suitable for carrying and directing wastewater. Additionally, their smooth interior surface allows for efficient water flow, making them a reliable choice for drainage applications.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords