• Sma Solar Inverter Photovoltaic Grid-Connected Inverter SG4KTL-S System 1
  • Sma Solar Inverter Photovoltaic Grid-Connected Inverter SG4KTL-S System 2
Sma Solar Inverter Photovoltaic Grid-Connected Inverter SG4KTL-S

Sma Solar Inverter Photovoltaic Grid-Connected Inverter SG4KTL-S

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
50000 unit
Supply Capability:
3000000 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

1.  Structure of  Photovoltaic Grid-Connected Inverter SG4KTL-S Description

A solar inverter, or PV inverter, or Solar converter, converts the variable direct current (DC) output of a photovoltaic (PV) solar panel into

autility frequency alternating current (AC) that can be fed into a commercial electrical grid or used by a local, off-grid electrical network.

 It is acritical BOS–component in a photovoltaic system, allowing the use of ordinary AC-powered equipment. Solar inverters have

special functions adapted for use with photovoltaic arrays, including maximum power point tracking and anti-islanding protection.

Suitable for 50Hz/60Hz grid, could be used in Asia, Africa and Europe. Available for hand installation, no need for lifting machinery

 assistance.

 

 

2.  Main Features of the Photovoltaic Grid-Connected Inverter SG4KTL-S

• Max. input voltage 600V, compatible with different PV panel and string design

• Only 9kg, easy for handling and installation

• Max. Efficiency at 98.0%

 

• Ultra-quiet, suitable for residential use

• Access to home WiFi system, easy to enjoy the online monitoring

• Wireless communication design, intelligent mobile phone local and remote monitoring

 

• Product certification: TÜV, CE, AS4777, AS/NZS 3100, VDE AR N 4105

• Manufacturer certification: ISO 9001, ISO 14001, OHSAS 18000

 

 

3.   Photovoltaic Grid-Connected Inverter SG4KTL-S Images

 

 

 

 

 

4.  Photovoltaic Grid-Connected Inverter SG4KTL-S Specification

 

Input Side Data

 
Max. PV input power4300W
Max. PV input voltage600V
Startup voltage150V
Nominal input voltage345V
MPP voltage range125~560V
MPP voltage range for nominal power240~520V
No. of MPPTs1
Max. number of PV strings per MPPT2
Max. PV input current18A
Max. current for input connector20A 
Output Side Data 
Nominal AC output power4000W
Max AC output power(PF=1)4210W
Max. AC output apparent power4210VA
Max. AC output current18.3A
Nominal AC voltage230Vac (Single phase)
AC voltage range180~276Vac (May vary as per corresponding country’s grid standard)
Nominal grid frequency50Hz/60Hz
Grid frequency range45~55Hz/55~65Hz (May vary as per corresponding country’s grid standard)
THD< 3 % (Nominal power)
DC current injection<0.5 %In
Power factor>0.99@default value at nominal power, (adj. 0.8 overexited~0.8 underexcited)
Protection 
Anti-islanding protectionYES
LVRTNO
DC reverse connection protectionYES
AC short circuit protectionYES
Leakage current protectionYES
DC switchOptional
DC fuseNO
Overvoltage protectionVaristors 
System Data 
Max. efficiency98.00%
Max. European efficiency97.50%
Isolation methodTransformerless
Ingress protection ratingIP65
Night power consumption<1W
Operating ambient temperature range-25~60℃ (>45℃ derating)
Allowable relative humidity range0~100%
Cooling methodNatural cooling
Max. operating altitude4000m (>2000m derating) 
DisplayLED, LCD(optional)
CommunicationWiFi (optional)
DC connection typeMC4
AC connection typePlug and play connector
CertificationIEC61000-6-2,IEC61000-6-3,
AS/NZS3100,AS4777.2,AS4777.3
VDE-AR-N-4105, VDE0126-1-1,CE,G83/2,C10/11,EN50438,CGC
Mechanical Data 
Dimensions(W×H×D)300*370*125 mm
Mounting methodWall bracket
Weight9kg

 

5.  FAQ of  Photovoltaic Grid-Connected Inverter SG4KTL-S

Q1:Which payment terms can you accept?

A1:T/T,L/C,Moneygram,Paypal are available for us.

 

Q2:Can we visit your factory?

A2:Sure,welcome at any time,seeing is believing.

 

Q:What is the difference between a string inverter and a microinverter?
A string inverter is a central inverter that converts the DC power generated by multiple solar panels connected in series into AC power. On the other hand, a microinverter is a smaller inverter that is attached to each individual solar panel, converting the DC power generated by each panel into AC power. The main difference is that string inverters are used for multiple panels, while microinverters are used for individual panels.
Q:What is the role of an MPPT (Maximum Power Point Tracking) inverter?
The role of an MPPT (Maximum Power Point Tracking) inverter is to optimize the conversion of solar energy into usable electricity. It constantly tracks and adjusts the operating point of the solar panels to ensure that they are always operating at their maximum power point, which maximizes the efficiency and output of the solar system.
Q:How does a solar inverter handle frequency variations?
A solar inverter handles frequency variations by continuously monitoring the grid frequency and adjusting its own output frequency accordingly. It maintains a stable and synchronized frequency by using advanced control algorithms and power electronics to ensure that the electricity generated by the solar panels matches the frequency of the utility grid. This allows the inverter to seamlessly integrate renewable energy into the existing power system without causing disruptions or damage.
Q:What is the maximum power output of a solar inverter?
The maximum power output of a solar inverter depends on its specifications and capacity. It can range from a few hundred watts to several megawatts, depending on the size and type of the solar inverter.
Q:Are there any ongoing maintenance requirements for a solar inverter?
Yes, there are ongoing maintenance requirements for a solar inverter. Regular inspections, cleaning, and monitoring of performance are recommended to ensure optimal functioning. Additionally, routine checks of electrical connections, firmware updates, and replacement of faulty components may be necessary to maintain the efficiency and longevity of the inverter.
Q:How does a solar inverter handle temperature variations?
A solar inverter handles temperature variations by employing various cooling mechanisms such as heat sinks, fans, or liquid cooling systems. These components help dissipate excess heat generated during operation, ensuring the inverter remains within its optimal temperature range. Additionally, advanced inverters are equipped with temperature sensors that continuously monitor the internal temperature and adjust the system's performance to maintain efficiency and protect against overheating.
Q:Are there any limitations on the number of solar panels that can be connected to a single inverter?
Yes, there are limitations on the number of solar panels that can be connected to a single inverter. The maximum number of panels that can be connected depends on various factors such as the power rating of the inverter, the voltage and current ratings of the panels, and the configuration of the system. In general, the inverter should be able to handle the combined power output of all the connected solar panels. If the panels generate more power than the inverter can handle, it may lead to system inefficiencies, reduced performance, or even damage to the inverter. Additionally, the voltage and current ratings of the panels should be within the acceptable range of the inverter. If the panels have a higher voltage or current rating than what the inverter can safely handle, it may result in overloading or malfunctioning of the inverter. Furthermore, the configuration of the solar panels also plays a role in determining the limitations. Panels can be connected in series or parallel, and each configuration has its own requirements and limitations. The inverter needs to be compatible with the specific configuration being used. To ensure proper functioning and optimal performance, it is recommended to consult the manufacturer's guidelines and specifications for both the solar panels and the inverter. These guidelines will provide information on the maximum number of panels that can be connected to a single inverter and any other specific limitations or requirements that need to be considered.
Q:Can a solar inverter be used in conjunction with a battery management system?
Yes, a solar inverter can be used in conjunction with a battery management system. In fact, many solar energy systems utilize both components together to optimize energy generation, storage, and usage. The solar inverter converts the DC power generated by solar panels into AC power for immediate use or to be fed back into the grid. Meanwhile, the battery management system manages the charging, discharging, and overall performance of the batteries, ensuring efficient energy storage and distribution.
Q:Can a solar inverter be used in a smart grid system?
Yes, a solar inverter can be used in a smart grid system. In fact, solar inverters play a crucial role in integrating renewable energy sources, such as solar power, into a smart grid. They convert the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power homes and businesses. Additionally, smart grid systems utilize advanced communication and control technologies to manage and optimize the flow of electricity, enabling solar inverters to interact with the grid and provide real-time data on energy generation and consumption. This integration helps increase the efficiency, reliability, and overall performance of the smart grid system.
Q:What is the role of a solar inverter in voltage and frequency regulation during islanding conditions?
The role of a solar inverter in voltage and frequency regulation during islanding conditions is to ensure stability and balance in the electrical system. It actively monitors and adjusts the voltage and frequency levels to match the required standards, even when disconnected from the main power grid. This prevents overvoltage or undervoltage situations and keeps the frequency within acceptable limits, thereby maintaining a reliable and safe power supply in islanded conditions.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords