• Grid Connected Solar PV Inverter  2200TL 2200W System 1
  • Grid Connected Solar PV Inverter  2200TL 2200W System 2
  • Grid Connected Solar PV Inverter  2200TL 2200W System 3
Grid Connected Solar PV Inverter  2200TL 2200W

Grid Connected Solar PV Inverter 2200TL 2200W

Ref Price:
get latest price
Loading Port:
Shekou
Payment Terms:
TT or LC
Min Order Qty:
10 unit
Supply Capability:
99999 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Grid Connected Solar PV Inverter  2200TL 2200W

 

High-yield of Solar PV Inverter  2200TL

 

Max 97.1%efficiency

Real timeprecise MPPT algorithm for max harvest

Wide inputvoltage operation range from 90V to 500V

 

All in one. Flexible and economicalsystem solution

Free siteselection due to IP65

Easy installationand maintenance due to “Plug & Play” connection

Interfaceselection-Wi-Fi/ RS485 / Dry Relay for more flexible

configurationandsystem monitoring

4” LCDdisplay

Low maintenance cost of PV inverter

Rust-freealuminumcovers

Flexiblemonitoring solution

Multifunctionrelay can be configured to show various inverter information

 

Intelligent grid management

Reactivepowercapability

Self powerreduce when over frequency

Remoteactive/reactivepower limit control


 

PV inverter datasheet

Technical Data

1100TL

1600TL

2200TL

2700TL

3000TL

Input (DC)

Max. Input Power

1100W

1600W

2200W

2700W

3000W

No. of MPPT / String per MPPT

1/1

Max. Input voltage

450V

450V

500V

500V

500V

Max. Input Voltage

80V

Rated input voltage

360V

Operating input voltage range

90V-400V

100V-480V

MPPT voltage range

110V-380V

165V-380V

170-450V

210-450V

230V-450V

Max. Input current per MPPT

10A

13A

Input short circuit current per MPPT

12A

15A

Output(AC)

Rated power(@230V,50Hz)

1000VA

1500VA

2000VA

2500VA

2800VA

Max. AC power

1000VA

1500VA

2000VA

2500VA

2800VA

Max. AC Output Current

4.5A

7A

9.5A

11.5A

13A

Rated Grid Voltage

230V

Nominal Grid Voltage Range

180V-270V(According to local standard)

Rated Frequency

50Hz / 60Hz

Grid frequency Range

44~55 / 54~66Hz(According to local  standard)

THDi

<3%

Power factor Adjustable Range

0.8 over excited … 0.8 under excited

Grid connection

Single phase

Efficiency

Max. efficiency

97%

97.1%

Weighted eff.(EU/CEC)

96%

96.2%

96.3%

MPPT efficiency

>99.5%

Standard

EMC

EN 61000-6-1, EN 61000-6-2, EN 61000-6-3,  EN 61000-6-4

RSSR

IEC 62109-1, IEC 62109-2

Grid Standards

AS4777, VDE4105, C10-C11, G83/G59 (more  available on request)

Protection

Anti-Islanding Protection

Yes

DC reverse polarity protection

Yes

Over Temp Protection

Yes

Leakage Current Protection

Yes

Over Voltage Protection

Yes

Over Current Protection

Yes

Earth Fault Protection

Yes

Communication

Standard Communication Mode

Wifi+RS485

Operation Data Storage

25 years

Relay

Yes

I/O

Yes

General data

DC Switch

optional

Ambient temperature range

-25℃ ~ +60℃

Topology

Transformerless

Cooling

Nature

Allowable relative humidity range

0 ~ 95% no condensing

Max. Operating Altitude

2000m

Noise

<35dB @1m

Degree of Protection

(per IEC 60529)

IP65

Dimension

400*310*130mm

Weight

11kg

12kg

Self-consumption at night

0

Display

Graphic display

Warranty

5 years



 

 

FAQ

 

1. Have any design tool and how to use it?

Shine Design is the system design software just for inverters, It can conduct installers to figure out panel numbers for a system, panel numbers for each string, and which inverter model is suitable for the system. Moreover, it can print a design report after input all necessary parameters, can calculate DC/AC wire wastage, annual generation, etc.

 

2. Does the inverter have monitoring solutions for residential system?

For small rating system, we have wired two monitoring solution (ShineNet via RS232 or RS485). (a) Local wireless monitoring solution (ShineVision via RF module communication) (b) Global wireless monitoring solution (WIFI module via WIFI network)

 

Q:Can a solar inverter be monitored remotely?
Yes, a solar inverter can be monitored remotely. With the advancement in technology, many solar inverters are equipped with monitoring systems that allow users to remotely monitor and control their solar power systems. This can be done through various methods such as mobile apps, web-based platforms, or even through specialized software. Remote monitoring enables users to track the performance, energy production, and overall health of their solar inverters from any location with internet access.
Q:What is the role of a voltage control unit in a solar inverter?
The role of a voltage control unit in a solar inverter is to regulate and maintain a consistent output voltage from the solar panels. It ensures that the electricity generated by the panels is converted and supplied at the appropriate voltage levels to meet the requirements of the connected devices or the grid. By controlling the voltage, it helps optimize the efficiency and reliability of the solar inverter system.
Q:Can a solar inverter be used with solar-powered air conditioning systems?
Yes, a solar inverter can be used with solar-powered air conditioning systems. The solar inverter is responsible for converting the direct current (DC) generated by the solar panels into alternating current (AC) that can be used to power various electrical appliances, including air conditioning units. By connecting the solar inverter to the solar panels and the air conditioning system, the generated solar energy can be efficiently utilized to power the AC system.
Q:Can a solar inverter be used with solar-powered electric vehicle charging stations?
Yes, a solar inverter can be used with solar-powered electric vehicle charging stations. A solar inverter is responsible for converting the DC power generated by solar panels into AC power that can be used to charge electric vehicles. By using a solar inverter, the solar energy harvested from the panels can be efficiently utilized to charge EVs, making it an environmentally-friendly and sustainable option for charging stations.
Q:How do you monitor the performance of a solar inverter?
One way to monitor the performance of a solar inverter is by using a monitoring system or software specifically designed for this purpose. These systems typically collect data from the inverter, such as energy production, voltage levels, and operating parameters, and provide real-time analytics and reports. By regularly reviewing this information, any anomalies or issues can be quickly identified and addressed, ensuring the optimal performance of the solar inverter.
Q:Can a solar inverter be used with a solar-powered waste management system?
Yes, a solar inverter can be used with a solar-powered waste management system. A solar inverter is responsible for converting the direct current (DC) produced by solar panels into alternating current (AC) that can be used to power various appliances and systems. In the case of a solar-powered waste management system, the solar inverter would ensure that the electricity generated by the solar panels is compatible with the system's components, such as motors, sensors, and controls. This would enable the waste management system to operate efficiently using clean and renewable solar energy.
Q:What is the role of a reactive power controller in a solar inverter?
The role of a reactive power controller in a solar inverter is to regulate and maintain the power factor of the inverter output. It ensures that the reactive power generated by the solar panels is properly balanced with the active power, thereby optimizing the efficiency and stability of the solar power system.
Q:How does a solar inverter protect against overvoltage?
A solar inverter protects against overvoltage by continuously monitoring the voltage levels of the solar panels. If the voltage exceeds a certain threshold, the inverter automatically reduces the power output or disconnects from the grid to prevent damage to the system and ensure the safety of the electrical components.
Q:What is the purpose of a solar inverter in a solar power system?
The purpose of a solar inverter in a solar power system is to convert the direct current (DC) electricity produced by the solar panels into alternating current (AC) electricity that can be used to power electrical devices in homes and businesses.
Q:How does a solar inverter prevent islanding?
A solar inverter prevents islanding by continuously monitoring the grid's voltage and frequency. If the inverter detects a deviation from the normal range, it immediately disconnects from the grid to avoid supplying power to an isolated island. By maintaining synchronization with the grid, the inverter ensures that it only operates when the grid is active, preventing the risk of islanding and enhancing grid stability and safety.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords