• FRP Pultrusion Profiles - Lightweight and High Strength FRP Pultruded Grating and Pultrusion Process for Different Styles System 1
  • FRP Pultrusion Profiles - Lightweight and High Strength FRP Pultruded Grating and Pultrusion Process for Different Styles System 2
  • FRP Pultrusion Profiles - Lightweight and High Strength FRP Pultruded Grating and Pultrusion Process for Different Styles System 3
  • FRP Pultrusion Profiles - Lightweight and High Strength FRP Pultruded Grating and Pultrusion Process for Different Styles System 4
  • FRP Pultrusion Profiles - Lightweight and High Strength FRP Pultruded Grating and Pultrusion Process for Different Styles System 5
  • FRP Pultrusion Profiles - Lightweight and High Strength FRP Pultruded Grating and Pultrusion Process for Different Styles System 6
FRP Pultrusion Profiles - Lightweight and High Strength FRP Pultruded Grating and Pultrusion Process for Different Styles

FRP Pultrusion Profiles - Lightweight and High Strength FRP Pultruded Grating and Pultrusion Process for Different Styles

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
1 m.t.
Supply Capability:
30000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

PRODUCT DESCRIPTION

FRP  pultruded  grating  has  the  most  characteristics  of  molded  grating,  but  it  has  its  distinct  advantages,  it  has very  high  fiberglass  content  in  the  loading  direction,  so  it  has  very  high  load  capability,  it  has  more  superiority when  used  at  wide  span,  so  that  the  basic  support  will  be  decreased  and  the  project  cost  will  be  reduced accordingly.

 

 

SPECIFICATION

The standard space between two crossbars is 6 inch or 12 inch.

Thickness (mm)

Bar width (mm)

Open space (mm)

Open rate (%)

Approx weight (kg/m

25.4

15.2

22.8

60

13.2

25.4

15.2

15.2

50

15.9

25.4

15.2

10.1

40

18.5

25.4

40

10.8

21

14.5

38.1

15.2

22.8

60

15.8

38.1

15.2

15.2

50

19.1

38.1

15.2

10.1

40

22.4

 

CHOICE FOR PULTRUDED GRATING

Resin: GP resin, ISO resin, VE resin, Phenolic resin

Color choice: Yellow, gray, green, custom color

Surface choice: Groove surface, grit surface, lozenge cover surface


FEATURES

a. Anti-corrosion and anti-rust

b. Light weight and high strength   

c. Anti-flammable

d. Anti- fatigue

e. Safe and anti-slippery    

f. Anti-ageing


 

APPLICATION

Operation terrace,  

stair walkway,

ground floor,

trench cover,

sidewalk,

foot bridge,

equipment safety fence,

scaffold.

 

 

COMPANT DESCRIPTION

CNBM  International  Corporation  is  one  subsidiary  of  CNBM,  we  focus  on  offering  good-quality  products,professional  service  and  complete  solution  to  our  customers.  Strong  delivery  capacity,  advanced  technology&  management,  strong financing  capability  and  excellent  after-sale  service  are  our  advantages  in  sharing international market.


PACKAGING & DELIVERY

1.Packaging Details:
        plastic film and pallet
2.Delivery Detail:
        In 5 days after receiving the down payment

 

FAQ

1.Q:Are you factory or trading company ?
A:We are Factory produce FRP machines and FRP products.
2.Q:If can customized by customers requirements?
A:yes,we can produce the machine with customized size.
3.Q:How about the payment?
A:We accept any kind of payment.
4.Q:What is the guarantee?
A:Gurantee is one year.
5.Q:If you can training?
A:yes ,we can training in our factory also can send engineers to your factory training.


 

PICTURES

 



Q: Are FRP pultrusion profiles resistant to jet fuel?
Yes, FRP pultrusion profiles are generally resistant to jet fuel.
Q: Are FRP pultrusion profiles resistant to impact from heavy machinery?
The high strength-to-weight ratio and excellent mechanical properties of FRP pultrusion profiles are well-known, making them resistant to various external impacts. However, their resistance to heavy machinery impacts depends on several factors. The impact resistance of FRP pultrusion profiles is determined by their design, composition, and reinforcement materials. Manufacturers use different materials like fiberglass, carbon fiber, or composites, which greatly affect the profiles' ability to withstand heavy machinery impacts. The thickness and overall dimensions of the FRP profiles also contribute to their impact resistance. Thicker profiles offer better resistance to impact loads than thinner ones. Additionally, profiles with reinforced sections or extra layers for structural integrity can further enhance their impact resistance. Considering the specific application and magnitude of impact from heavy machinery is crucial. While FRP pultrusion profiles can generally withstand moderate to high impacts, extreme forces or heavy machinery with substantial weight can still cause damage. In such cases, additional protective measures like impact-resistant coatings or metal inserts may be necessary. In conclusion, FRP pultrusion profiles demonstrate good resistance to impact from heavy machinery due to their inherent strength and durability. However, it is advisable to consult with the manufacturer or a structural engineer to ensure that the profiles meet the specific requirements of the application and machinery involved.
Q: Can FRP pultrusion profiles be used in pedestrian bridges?
Yes, FRP pultrusion profiles can be used in pedestrian bridges. FRP (Fiber Reinforced Polymer) pultrusion profiles offer several advantages such as high strength-to-weight ratio, corrosion resistance, and durability, making them suitable for pedestrian bridge applications. These profiles can be customized to meet specific design requirements, ensuring the safe and efficient construction of pedestrian bridges.
Q: Are FRP pultrusion profiles resistant to fading or discoloration?
FRP pultrusion profiles possess exceptional resistance against fading and discoloration. This attribute stems from the inherent properties of the materials employed in their construction. Typically, FRP profiles are fabricated using a blend of fiberglass reinforcements and a polymer resin matrix, both of which inherently resist UV radiation and other environmental factors that lead to fading and discoloration. The polymer resin matrix used in FRP profiles is specifically designed to exhibit outstanding chemical resistance and UV stability. As a result, the profiles retain their original color and appearance for an extended duration. This makes FRP pultrusion profiles an ideal choice for outdoor applications, where exposure to sunlight and harsh weather conditions is prevalent. Additionally, the pultrusion manufacturing process ensures that the color of FRP profiles remains consistent throughout their entire cross-section. Consequently, even in the presence of minor surface damage or wear, the underlying color of the profile remains unchanged, ensuring a uniform appearance. In summary, FRP pultrusion profiles offer unparalleled resistance against fading and discoloration, making them a resilient and long-lasting option for a wide range of applications, including construction, infrastructure, transportation, and more.
Q: Can FRP pultrusion profiles be used in telecommunications applications?
Yes, FRP (Fiber Reinforced Polymer) pultrusion profiles can be used in telecommunications applications. FRP pultrusion profiles offer several advantages that make them suitable for telecommunications infrastructure. Firstly, FRP pultrusion profiles are lightweight yet strong, which makes them ideal for applications such as antenna supports, cable trays, and equipment racks. Their high strength-to-weight ratio allows for easier installation and transportation, while still providing the necessary structural support. Secondly, FRP pultrusion profiles are corrosion resistant, which is a crucial characteristic in telecommunication applications. Telecommunications infrastructure is often exposed to harsh environments, including moisture, chemicals, and extreme temperatures. Unlike traditional materials like steel or wood, FRP does not corrode or degrade in these conditions, ensuring long-term durability and reliability. Additionally, FRP pultrusion profiles offer electrical insulation properties, which is vital in telecommunications applications. They do not conduct electricity, making them safe for use in areas where electrical equipment is installed. This feature helps prevent electrical interference and ensures the integrity of the telecommunication system. Furthermore, FRP pultrusion profiles can be customized to meet specific design requirements. They can be manufactured in various shapes and sizes, allowing for flexibility in designing telecommunication infrastructure. This versatility makes FRP pultrusion profiles suitable for a wide range of applications within the telecommunications industry. In conclusion, FRP pultrusion profiles are well-suited for telecommunications applications due to their lightweight yet strong nature, corrosion resistance, electrical insulation properties, and customization possibilities. These attributes make them a reliable choice for supporting and protecting telecommunication infrastructure.
Q: Can FRP pultrusion profiles be used in cooling towers?
Yes, FRP pultrusion profiles can indeed be used in cooling towers. FRP (Fiber Reinforced Polymer) pultrusion profiles offer excellent corrosion resistance, lightweight construction, and high strength, making them ideal for cooling tower applications. These profiles can withstand the harsh environmental conditions typically found in cooling towers, such as exposure to chemicals, moisture, and temperature variations. Additionally, FRP pultrusion profiles are easy to install, require minimal maintenance, and have a long service life, making them a cost-effective choice for cooling tower construction.
Q: Are FRP pultrusion profiles non-conductive?
Yes, FRP (Fiber Reinforced Polymer) pultrusion profiles are non-conductive. This is because they are made up of a combination of reinforced fibers, typically fiberglass, and a polymer resin matrix. The fiberglass fibers provide the strength and stiffness, while the polymer resin acts as a binder to hold the fibers together. One of the key advantages of FRP pultrusion profiles is their excellent electrical insulation properties. Unlike metals, which are conductive, FRP profiles do not conduct electricity. This makes them ideal for applications where electrical insulation is required. In addition to being non-conductive, FRP pultrusion profiles also offer other benefits such as corrosion resistance, high strength-to-weight ratio, and low maintenance requirements. These properties make them suitable for a wide range of applications, including electrical and telecom infrastructure, chemical processing plants, bridges, and building construction. It is important to note that the non-conductive nature of FRP pultrusion profiles does not mean they cannot be made conductive if required. Special additives or coatings can be incorporated during the manufacturing process to impart conductive properties if needed.
Q: Are FRP pultrusion profiles resistant to hydraulic oils?
Yes, FRP pultrusion profiles are generally resistant to hydraulic oils. The combination of fiberglass reinforcement and resin matrix used in pultrusion manufacturing makes these profiles highly resistant to various chemicals, including hydraulic oils. However, it is recommended to consult the specific resin manufacturer or supplier for detailed information on the compatibility of their FRP pultrusion profiles with different types of hydraulic oils.
Q: Are FRP pultrusion profiles resistant to oil or fuel spills?
FRP pultrusion profiles exhibit a general resistance to oil or fuel spills, which is well-known in the industry. This is due to their exceptional chemical resistance, particularly against oils and fuels, which is attributed to the combination of the polymer resin and reinforcing fibers. This unique blend creates a robust and enduring material capable of withstanding exposure to various substances. The impermeable nature of FRP pultrusion profiles is another significant advantage, making them impervious to oil and fuel. Consequently, even in the event of a spill, these profiles will not absorb the substances, thus preventing any potential harm or deterioration. Furthermore, FRP possesses corrosion resistance and does not react with oils or fuels, ensuring its longevity and performance. These remarkable qualities make FRP pultrusion profiles highly sought after in industries where oil or fuel spills are a concern, such as oil refineries, chemical plants, and offshore platforms. They provide a dependable solution for applications requiring resistance to chemical exposure, offering a cost-effective and low-maintenance alternative to conventional materials.
Q: Can FRP pultrusion profiles be used in the construction of solar panel frames?
Yes, FRP (Fiber Reinforced Polymer) pultrusion profiles can be used in the construction of solar panel frames. FRP pultrusion profiles are lightweight, strong, and resistant to corrosion, making them an ideal material choice for solar panel frames. The durability and high strength-to-weight ratio of FRP pultrusion profiles ensure that the frames can withstand various weather conditions and long-term exposure to sunlight. Additionally, FRP pultrusion profiles can be easily customized to meet specific design requirements, allowing for flexibility in the construction of solar panel frames. Overall, the use of FRP pultrusion profiles in solar panel frame construction offers numerous advantages, making it a suitable choice for the solar energy industry.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords