• Foundry Coke Made in Shandong in size 80-120MM System 1
  • Foundry Coke Made in Shandong in size 80-120MM System 2
Foundry Coke Made in Shandong in size 80-120MM

Foundry Coke Made in Shandong in size 80-120MM

Ref Price:
get latest price
Loading Port:
Qingdao
Payment Terms:
TT OR LC
Min Order Qty:
21.4
Supply Capability:
1014 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Brief Introduction

Foundry Coke is the main fuel of melting iron in the oven. It can melt the materials in the over, make the iron reach great heat, and keep good air permeability by sustain stock column. Thus, the foundry coke should have the characteristics of big block, low reactivity, small porocity, enough anti-crush strengh, low ash and low sulphur. We are serving the world

The coke handled by our cooperation is made from superior coking coal of Shanxi province. Provided with the advantages of low ash, low sulphur and high carbon. Our coke is well sold in European, American, Japanese and South-east Asian markets. Our owned Coke plant are located in Shanxi Province and supplying of you many kinds of coke.

we supply Foundry Coke long-term, its characteristic is best strength, low sulfur and phosphorus,thermal stability.

Specifications:

PARAMETER   UNIT GUARANTEE VALUE

ASH %

8% max

10% max

12% max

V.M.% MAX

1.5% max

1.5% max

2% max

SULFUR %

0.65% max

0.65% max

0.7% max

MOISTURE

5% max

5% max

5% max

Size

80mm-120mm80-150100-150mm, or as request

 

Features

1. Our quality is always quite good and stable which is producing and packing according to customers' requirements.

2. Putting Client profile into first, achieved mutual benefit.

3. Good partner on business. It's a good and wise choice for customers' to purchase from us. It's our great honor to cooperate with you. It is more -widely used around the world

4. We can supply documents as follows:

- bill of loading,

-Invoice,

-Packing List

-Insurance

-standard inspection pictures of the container as specified by INSPECTORATE

-or more requested by buyer.

Pictures

 

Foundry Coke Made in Shandong in size 80-120MM

Foundry Coke Made in Shandong in size 80-120MM

FAQ

1.    What is the packing?

In 25kg bag/ In jumbo bags without pallet/ Two jumbo bags with one pallet/ or as customers’ request

2. What is the production capacity?

10 thousand tons per month

3 What is payment term?

Irrevocable LC at sight/ 20% down payment by T/T and 80% against BL copy byT/T/ or to be discussed

 

Q: What are the effects of carbon emissions on agriculture?
Carbon emissions have numerous detrimental effects on agriculture. Firstly, increased levels of carbon dioxide (CO2) in the atmosphere contribute to global warming, leading to changes in rainfall patterns and more frequent extreme weather events such as droughts, floods, and heatwaves. These weather conditions disrupt agricultural production by reducing crop yields, damaging crops, and increasing the prevalence of pests and diseases. Higher temperatures also accelerate the rate of evaporation, resulting in soil moisture deficits and water scarcity, which negatively impact crop growth and productivity. In addition, elevated CO2 levels can alter the nutritional content of crops, reducing their quality and nutritional value. For example, studies have shown that increased CO2 concentrations can decrease the protein content in wheat and rice, leading to potential health issues for those who rely on these staple crops. Furthermore, carbon emissions contribute to the formation of ground-level ozone, a harmful air pollutant. Ozone damages plant cells, inhibits photosynthesis, and reduces crop yields. It particularly affects sensitive crops such as soybeans, wheat, and cotton. The effects of carbon emissions on agriculture are not limited to crop production. Livestock farming is also impacted as rising temperatures and water scarcity make it more challenging to maintain adequate grazing lands and provide sufficient water and fodder for animals. Additionally, changes in climate patterns can lead to the spread of livestock diseases and pests, further endangering the livestock industry. Overall, carbon emissions have a cascading effect on agriculture, leading to reduced crop yields, lower nutritional value, livestock farming challenges, and increased vulnerability to pests, diseases, and extreme weather events. Addressing and mitigating carbon emissions is crucial to safeguarding global food security and ensuring the sustainability of agricultural systems.
Q: What are the different types of carbon-based inks?
There are several different types of carbon-based inks that are commonly used in various applications. One type is carbon black ink, which is made by burning organic materials such as wood or petroleum products in an oxygen-depleted environment. This ink is known for its deep black color and is often used in printing and calligraphy. Another type is carbon nanotube ink, which is made by dispersing carbon nanotubes in a liquid medium. Carbon nanotubes are tiny cylindrical structures made of carbon atoms, and their unique electronic properties make them useful in applications such as flexible electronics and energy storage devices. There is also graphene ink, which is made by dispersing graphene flakes in a liquid medium. Graphene is a single layer of carbon atoms arranged in a hexagonal lattice, and it has exceptional strength, electrical conductivity, and flexibility. Graphene ink is used in various applications, such as flexible electronics, sensors, and batteries. Additionally, there are conductive carbon-based inks that are used in electronics and circuitry. These inks typically contain a mixture of carbon particles and a binder material, and they are used to create conductive traces on substrates such as paper or plastic. Overall, carbon-based inks offer a wide range of possibilities due to the unique properties of carbon materials. They are used in various fields, including printing, calligraphy, electronics, energy storage, and more.
Q: What are the industrial uses of diamonds?
Diamonds have a wide range of industrial uses due to their exceptional physical properties. One of the most common industrial uses of diamonds is in the manufacturing of cutting and grinding tools. Diamond-tipped saw blades, drill bits, and grinding wheels are highly sought after for their superior hardness and abrasion resistance. These tools are used to cut and shape hard materials like concrete, ceramics, and metals. Diamonds also find extensive applications in the electronics industry. They are used as heat sinks in high-power electronic devices and as abrasive materials for polishing and lapping electronic components. The thermal conductivity of diamonds allows them to efficiently dissipate heat, making them ideal for electronic devices that generate a lot of heat during operation. Furthermore, diamonds are used in the production of specialized windows, lenses, and prisms for various scientific and industrial applications. Their optical properties, such as high refractive index and low dispersion, make them valuable for creating precision optics used in lasers, spectroscopy, and telecommunications. In addition, diamonds have found niche uses in the medical and dental fields. They are used in surgical tools such as scalpels and dental drills due to their exceptional hardness and ability to retain sharp edges. Diamond coatings are also applied to medical implants and prosthetics to improve their wear resistance and biocompatibility. Lastly, diamonds are utilized in the oil and gas industry for drilling and exploration purposes. Diamond drill bits are capable of penetrating extremely hard rock formations, making them essential for extracting oil and natural gas from deep beneath the Earth's surface. Overall, the industrial uses of diamonds are vast and diverse, ranging from cutting and grinding tools to electronics, optics, medicine, and even oil and gas exploration. The unique properties of diamonds make them indispensable in numerous industrial applications, contributing to advancements in various fields.
Q: What is carbon sequestration and how does it work?
Carbon sequestration is the process by which carbon dioxide (CO2) is captured and stored, preventing it from being released into the atmosphere and contributing to climate change. This process is vital in combating global warming, as CO2 is a greenhouse gas that traps heat and leads to the Earth's temperature rising. There are several methods of carbon sequestration, but the most commonly used ones include terrestrial, oceanic, and geological sequestration. Terrestrial sequestration involves capturing CO2 from the atmosphere and storing it in plants, trees, and soil. This can be achieved through afforestation (planting new forests), reforestation (restoring deforested areas), and adopting sustainable agricultural practices that enhance soil carbon storage. Oceanic sequestration, on the other hand, involves storing CO2 in the oceans. This method relies on the natural ability of the oceans to absorb and store large amounts of CO2. By enhancing the ocean's capacity to capture CO2, such as through the use of algae or other marine plants, we can effectively reduce the concentration of CO2 in the atmosphere. Geological sequestration involves capturing CO2 from industrial sources, such as power plants or factories, and injecting it deep underground into geological formations. These formations, such as depleted oil and gas reservoirs or saline aquifers, act as natural storage sites for the captured CO2. Over time, the injected CO2 becomes trapped and mineralizes, permanently storing it away from the atmosphere. Additionally, carbon sequestration can also occur through technological advancements, such as direct air capture (DAC) and carbon capture and storage (CCS). DAC involves using machines or devices to directly capture CO2 from the air, while CCS focuses on capturing CO2 emissions from industrial processes before they are released into the atmosphere. Once captured, the CO2 can be transported and stored underground, either in geological formations or in depleted oil and gas reservoirs. Overall, carbon sequestration is a crucial tool in mitigating climate change. By capturing and storing CO2, we can reduce the concentration of greenhouse gases in the atmosphere, helping to stabilize the Earth's climate. However, it is important to note that while carbon sequestration is an important solution, it should not be seen as a standalone solution. Combining carbon sequestration with other mitigation strategies, such as reducing emissions and transitioning to renewable energy sources, is essential for effectively combating climate change.
Q: What are the uses of carbon nanotubes?
Due to their unique properties, carbon nanotubes find wide application across various industries. In the realm of electronics and semiconductors, they are particularly valuable. With exceptional electrical conductivity, carbon nanotubes are ideal for creating smaller and more efficient electronic devices. They can be incorporated as conductive additives in polymers, resulting in materials with enhanced electrical and thermal properties. Another crucial domain where carbon nanotubes excel is materials science. Their exceptional mechanical strength and lightweight nature make them ideal for reinforcing and strengthening materials. By incorporating carbon nanotubes into composites, their mechanical properties can be improved, making them more durable. Furthermore, their usage in constructing super-strong fibers finds relevance in industries such as aerospace and construction. Carbon nanotubes have also found valuable applications in the medical field. They can be utilized in drug delivery systems, wherein drugs are encapsulated within the nanotube structure and directly delivered to specific cells or tissues. This method enables more effective and targeted drug delivery, minimizing the side effects associated with traditional drug administration methods. Additionally, carbon nanotubes are being explored as a potential material for biosensors, facilitating the early detection of diseases and pathogens. In the realm of energy storage, carbon nanotubes are being extensively researched as an alternative to conventional lithium-ion batteries. Their potential to store more energy and charge faster could revolutionize the field of energy storage and power generation. Additionally, carbon nanotubes can be employed as catalysts in fuel cells, enhancing their efficiency and cost-effectiveness. In summary, the applications of carbon nanotubes are vast and continue to expand as new discoveries are made. From electronics to materials science, medicine to energy storage, these nanotubes have the potential to revolutionize various industries and enhance the performance of existing technologies.
Q: What are the consequences of increased carbon emissions on educational systems?
Increased carbon emissions can have several consequences on educational systems. Firstly, the health impacts of pollution caused by carbon emissions can lead to increased absenteeism among students and teachers, affecting the overall learning environment. Additionally, extreme weather events linked to climate change, such as hurricanes or heatwaves, can disrupt educational infrastructure, leading to school closures and disruptions in academic schedules. Moreover, the need to address climate change and its impacts may require educational institutions to allocate resources and curriculum time to climate-related topics, potentially diverting attention and resources from other subjects. Finally, the long-term consequences of climate change, such as rising sea levels or increased natural disasters, may force the relocation or rebuilding of educational facilities, causing significant disruptions to students' education.
Q: What's the difference between blue and red Panasonic batteries (carbon)?
Blue is leak, proof, general, Purpose, general use battery (leak proof)Red is the long life long life battery (suitable for watches and clocks and other small power appliances)And heavy duty green seems to be good for high power appliances, such as toy cars
Q: What is carbon coffee fiber?
The carbon coffee fiber uses the coffee residue left after the coffee and is made into crystal by calcining, then ground into nanometer powder and added to the polyester fiber to produce a functional polyester staple, a coffee carbon fiber.
Q: What are the impacts of carbon emissions on the stability of tundra ecosystems?
The stability of tundra ecosystems is significantly and extensively affected by carbon emissions. Greenhouse gases like carbon dioxide and methane, which are emitted into the atmosphere, contribute to global warming and climate change. Consequently, tundra ecosystems, which are particularly susceptible to temperature fluctuations, suffer various adverse consequences. To begin with, increased carbon emissions result in higher temperatures, leading to the thawing of permafrost in the tundra. Permafrost, which is permanently frozen soil, serves as the foundation for the tundra ecosystem. Its thawing compromises the stability of the entire ecosystem, rendering the ground unstable and causing landscapes to collapse, landslides to occur, and drainage patterns to be altered. This disruption negatively affects the habitats of plants and animals, as well as the distribution of water resources. Moreover, as permafrost thaws, organic matter that has been frozen for thousands of years begins to decompose. This decomposition process releases substantial amounts of carbon dioxide and methane into the atmosphere, intensifying the greenhouse effect. This feedback loop accelerates climate change and contributes to the overall increase in carbon emissions. Furthermore, the thawing of permafrost also impacts the vegetation in tundra ecosystems. Many plant species in the tundra rely on the stability and availability of nutrients provided by the permafrost layer. With its degradation, plants encounter difficulties in establishing and maintaining their root systems. This subsequently reduces plant productivity and alters the composition of plant communities. Changes in vegetation can have consequences for wildlife, such as reindeer, caribou, and migratory birds, which depend on specific plant species for sustenance and shelter. Additionally, the increased thawing of permafrost releases previously trapped pollutants and contaminants, which further jeopardize the stability of tundra ecosystems. These pollutants, including heavy metals and toxic chemicals, can enter waterways and disrupt the delicate balance of the ecosystem, impacting aquatic life. In conclusion, carbon emissions contribute to the destabilization of tundra ecosystems through the thawing of permafrost, alteration of vegetation, release of greenhouse gases, and contamination of water resources. These impacts not only affect the unique biodiversity of the tundra but also have implications for global climate change. It is crucial to reduce carbon emissions and mitigate the effects of climate change to preserve the stability and integrity of these fragile ecosystems.
Q: How does carbon affect the color of gemstones?
Carbon can have a significant impact on the color of gemstones. In fact, it is one of the main factors that contribute to the coloration of certain gemstones. One of the most well-known examples is diamonds. Diamonds are made up of carbon atoms arranged in a crystal lattice structure. The presence of impurities or defects within this crystal lattice can cause the diamond to exhibit various colors. When there is a high concentration of carbon impurities in a diamond, it can result in a yellow or brown tint. These are known as "fancy colored diamonds" and are graded on a scale that ranges from D (colorless) to Z (light yellow or brown). The more carbon impurities present, the more intense the color becomes. On the other hand, a diamond with a lower concentration of carbon impurities will appear more colorless. Carbon can also affect the color of other gemstones. For example, certain varieties of sapphires can contain traces of carbon that give them a grayish or blackish appearance. These are known as "black sapphires" or "star sapphires" and are highly sought after for their unique coloration. Similarly, carbon impurities in rubies can cause them to have a purplish hue. It is important to note that while carbon can impact the color of gemstones, it is not the only factor that determines their color. Other elements or impurities, as well as the crystal structure and light absorption properties of the gemstone, also play a significant role. Overall, the presence of carbon in gemstones can result in a wide range of colors, adding to their beauty and desirability in the world of gemology.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches