FC92 Calcined Anthracite With National Standard
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 0 m.t.
- Supply Capability:
- 100000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Packaging & Delivery
Packaging Detail: | 25kgs/50kgs/1ton per bag or as buyer's request |
Delivery Detail: | Within 20 days |
Specifications
Calcined Anthracite
Fixed carbon: 90%-95%
S: 0.5% max
Size: 0-3. 3-5.3-15 or as request
PARAMETER UNIT GUARANTEE VALUE | |||||
F.C.% | 95MIN | 94MIN | 93MIN | 92MIN | 90MIN |
ASH % | 4MAX | 5MAX | 6MAX | 7MAX | 8MAX |
V.M.% | 1 MAX | 1MAX | 1.5MAX | 1.5MAX | 1.5MAX |
SULFUR % | 0.5MAX | 0.5MAX | 0.5MAX | 0.5MAX | 0.5MAX |
MOISTURE % | 0.5MAX | 0.5MAX | 0.5MAX | 0.5MAX | 0.5MAX |
Feature
All of our goods are made in the best quality of world famous Tianjin. All of our products are with High carbon, Low ash, low sulphur, Low Moisture.
Usage
The Calcined Anthracite Coal/Gas Calcined Anthracite Coal/Carbon Raiser is mainly used in steelmaking in electrical stove, screening water, shipbuilding sandblast to remove rust. It can reduce the cost of steelmaking effectively by replacing the traditional petroleum coke of carburant.Also can improve the Carbon content in steel-melting and Ductile iron foundry.
Size can be adjusted based on buyer's request.
Pictures of Calcined Anthracite
- Q: What is the carbon content of different fuels?
- The carbon content of different fuels varies depending on the source and composition of the fuel. Generally, fossil fuels such as coal, oil, and natural gas have high carbon content, with coal having the highest. Renewable fuels like biofuels and biomass also contain carbon, but their carbon content can vary depending on the feedstock and production process. On the other hand, carbon-neutral fuels like hydrogen and electricity have negligible carbon content, as they do not produce carbon dioxide when burned.
- Q: What is carbon offsetting in the fashion industry?
- Carbon offsetting in the fashion industry refers to the practice of compensating for the greenhouse gas emissions produced during the production, transportation, and disposal of clothing and accessories. This process involves investing in projects or activities that reduce or remove an equivalent amount of carbon dioxide (CO2) from the atmosphere to offset the emissions generated by the industry. Fashion is known for its significant contribution to environmental degradation, with the production of textiles, manufacturing processes, and transportation all contributing to carbon emissions. Carbon offsetting provides a way for fashion brands and companies to take responsibility for their carbon footprint and work towards reducing their environmental impact. There are various ways in which carbon offsetting is implemented in the fashion industry. One common method is through the support of renewable energy projects, such as wind farms or solar power plants, which generate clean energy and reduce the reliance on fossil fuels. By investing in these projects, fashion brands can offset a portion of their emissions by supporting the production of renewable energy that displaces the need for fossil fuel-based energy sources. Another approach to carbon offsetting is through reforestation or afforestation projects. Trees play a crucial role in absorbing CO2 from the atmosphere, so planting trees or conserving existing forests can help offset emissions. Fashion companies can invest in projects that protect existing forests from deforestation or support initiatives that plant trees in areas affected by deforestation or land degradation. Moreover, some fashion brands opt for carbon offsetting by investing in projects that capture and store carbon dioxide from the atmosphere, such as carbon capture and storage (CCS) technologies. These projects focus on removing CO2 emissions from industrial processes, preventing them from being released into the atmosphere. It is important to note that carbon offsetting should not be seen as a complete solution to the fashion industry's environmental impact. While it can help mitigate some of the emissions, it is crucial for brands to prioritize reducing their carbon footprint through sustainable practices, including using eco-friendly materials, improving energy efficiency, and implementing circular fashion initiatives. Overall, carbon offsetting in the fashion industry is a strategy to compensate for the greenhouse gas emissions generated throughout the supply chain. By investing in projects that reduce or remove an equivalent amount of CO2 from the atmosphere, fashion brands can take steps towards minimizing their environmental impact and working towards a more sustainable future.
- Q: What are the impacts of carbon emissions on indigenous communities?
- The impacts of carbon emissions on indigenous communities are significant and multifaceted. These communities, who often depend on their surrounding environment for sustenance and cultural practices, are particularly vulnerable to the consequences of climate change. Increased carbon emissions contribute to rising global temperatures, leading to more frequent and intense extreme weather events such as droughts, floods, and storms. This directly affects indigenous communities' access to clean water, food security, and the ability to maintain traditional practices like agriculture, hunting, and fishing. Moreover, carbon emissions contribute to the melting of polar ice caps and glaciers, leading to rising sea levels and coastal erosion. This poses a serious threat to indigenous communities living in low-lying coastal areas, displacing them from their ancestral lands and disrupting their cultural heritage. Indigenous communities also face health issues as a result of carbon emissions. The burning of fossil fuels releases harmful pollutants that degrade air quality, leading to respiratory problems and an increased risk of diseases. Additionally, the extraction and processing of fossil fuels often occur on or near indigenous territories, leading to environmental degradation, water pollution, and the displacement of communities. Overall, the impacts of carbon emissions on indigenous communities are profound, undermining their cultural identity, livelihoods, and overall well-being. It is crucial to recognize and address these impacts through sustainable and inclusive climate action, ensuring the protection and empowerment of indigenous communities in the face of climate change.
- Q: How is carbon used in the steel industry?
- Carbon is used in the steel industry as an essential element for the production of steel. It is added to iron during the steelmaking process to increase the strength and hardness of the final product. By controlling the carbon content, different types of steel with varying properties can be produced, such as high carbon steel for tools or low carbon steel for structural applications.
- Q: How is carbon used in the production of nanoelectronics?
- The production of nanoelectronics involves the diverse utilization of carbon. One of the most notable applications is seen in the creation of carbon nanotubes (CNTs), which are cylindrical structures composed solely of carbon atoms. These nanotubes possess exceptional electrical and mechanical properties that render them highly suitable for incorporation into nanoelectronic devices. CNTs can serve as transistors, which serve as the fundamental building blocks of electronic circuits. Due to their diminutive size and outstanding electrical conductivity, CNT transistors have the capacity to generate high-performance, low-power devices. Consequently, they hold the potential to supplant conventional silicon transistors, thus enabling the development of more sophisticated and compact electronic devices. In addition, carbon plays a pivotal role in the production of graphene, a single layer of carbon atoms arranged in a two-dimensional honeycomb lattice. Graphene exhibits extraordinary electrical conductivity, thermal conductivity, and mechanical strength. Consequently, it can function as a conductive material in nanoelectronics, thereby facilitating the creation of swifter and more efficient electronic devices. Moreover, carbon-based materials can be employed in nanoelectronics for energy storage purposes. For example, carbon nanotubes and graphene can be harnessed in supercapacitors, energy storage devices that possess the ability to rapidly store and discharge substantial amounts of electrical energy. These carbon-based energy storage systems hold the potential to revolutionize the realm of portable electronics and electric vehicles. In conclusion, the extensive utilization of carbon in the production of nanoelectronics can be observed. Its distinctive properties, including heightened electrical conductivity, mechanical strength, and thermal conductivity, render it an ideal material for the advancement of high-performance electronic devices. Carbon nanotubes, graphene, and other carbon-based materials serve as crucial components in the fabrication of nanoelectronic devices, thereby enabling progress in computing power, energy storage, and the miniaturization of electronic components.
- Q: What are carbon nanomaterials?
- Carbon nanomaterials are a class of materials consisting of carbon atoms arranged in various structural forms, such as nanoparticles, nanotubes, and graphene. They possess unique properties, including high strength, excellent electrical conductivity, and a large surface area, making them useful in a wide range of applications, from electronics to medicine.
- Q: How dnf advanced carbon ashes?
- That thing is called the advanced furnace rock carbon... Not ash carbon...... It was bought at the mall (sold before, no now), with a success rate plus ten percent.
- Q: How does carbon affect ocean acidification?
- Carbon affects ocean acidification by increasing the concentration of carbon dioxide in the atmosphere. When carbon dioxide dissolves in seawater, it reacts with water molecules to form carbonic acid, which lowers the pH of the ocean. This decrease in pH makes the water more acidic, impacting marine organisms like corals, shellfish, and plankton, as it hinders their ability to build and maintain their shells or skeletons. Additionally, ocean acidification can disrupt the food chain and ecological balance in marine ecosystems.
- Q: What is the significance of the determination of total organic carbon in purified water?
- Purified water represents the total amount of organic matter in water by carbon content. It is an important indicator of water quality. The detection of total organic carbon in water is an important item for the detection of pharmaceutical water. Inspection item 2005 edition test item [1] character: This product is colorless and tasteless clear liquid. Check: pH, take this product 10ml, plus methyl red indicator liquid 2 drops, may not show red; another take 10ml, add bromine, thymol blue, indicating liquid 5 drops, may not show blue. Chloride, sulfate and calcium salt were taken in three test tubes, each with 50ml.
- Q: What is carbon neutral tourism?
- Carbon neutral tourism refers to a form of tourism that aims to minimize or eliminate the carbon footprint generated by travel and related activities. It is an approach that seeks to balance the amount of carbon dioxide released into the atmosphere with an equivalent amount of carbon dioxide removed or offset. To achieve carbon neutrality, tourism operators and destinations take various measures to reduce their greenhouse gas emissions. This can include using renewable energy sources, implementing energy-efficient practices, promoting sustainable transport options, and adopting eco-friendly technologies. Additionally, carbon offsetting is often employed, which involves investing in projects that reduce greenhouse gas emissions elsewhere, such as reforestation or renewable energy initiatives. The concept of carbon neutral tourism recognizes the significant contribution of the travel and tourism industry to global carbon emissions. According to the United Nations World Tourism Organization, tourism accounts for around 8% of global greenhouse gas emissions. By embracing carbon neutrality, the industry acknowledges its responsibility to minimize its environmental impact and contribute to climate change mitigation efforts. One of the key benefits of carbon neutral tourism is the reduction of greenhouse gas emissions, which helps combat climate change. By adopting sustainable practices and offsetting remaining emissions, destinations and operators can play a crucial role in preserving natural resources, protecting biodiversity, and minimizing pollution. Moreover, carbon neutral tourism can also enhance the reputation and competitiveness of businesses and destinations, attracting environmentally conscious travelers who prioritize sustainability. However, it is important to note that achieving carbon neutrality is a complex task that requires commitment and collaboration from all stakeholders involved in the tourism industry. It involves measuring and monitoring emissions, setting reduction targets, implementing sustainable practices, and investing in carbon offset projects. Moreover, transparency and credibility are crucial in ensuring that carbon offset initiatives are verifiable and contribute to real emissions reductions. In conclusion, carbon neutral tourism is a proactive approach to minimize the environmental impact of travel and tourism activities. It involves reducing emissions and offsetting remaining ones to achieve a net-zero carbon footprint. By embracing carbon neutrality, the tourism industry can contribute to global climate change mitigation efforts while simultaneously promoting sustainable practices and attracting environmentally conscious travelers.
Send your message to us
FC92 Calcined Anthracite With National Standard
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 0 m.t.
- Supply Capability:
- 100000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches