• FC 90% GAS Calcined Anthracite Sells Good in Middle East System 1
  • FC 90% GAS Calcined Anthracite Sells Good in Middle East System 2
  • FC 90% GAS Calcined Anthracite Sells Good in Middle East System 3
FC 90% GAS Calcined Anthracite Sells Good in Middle East

FC 90% GAS Calcined Anthracite Sells Good in Middle East

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT OR LC
Min Order Qty:
-
Supply Capability:
-

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specifications

Calcined Anthracite
Fixed carbon: 90%
S: 0.5% max
Size: 0-3. 3-5.3-15 or as request

Calcined Anthracite is produced using the best Anthracite-Taixi Anthracite with low S and P, It is widely used in steel making and casting, Chemical and some other fields.

General Specification of Calcined Anthracite:


PARAMETER   UNIT GUARANTEE VALUE

F.C.%

95MIN

94MIN

93MIN

92MIN

90MIN

ASH %

4MAX

5MAX

6MAX

7MAX

8MAX

V.M.%

1 MAX

1MAX

1.5MAX

1.5MAX

1.5MAX

SULFUR %

0.5MAX

0.5MAX

0.5MAX

0.5MAX

0.5MAX

MOISTURE %

0.5MAX

0.5MAX

0.5MAX

0.5MAX

0.5MAX


Size can be adjusted based on buyer's request.

Pictures of Calcined Anthracite:

FC 90%-95% Calcined AnthraciteFC 90%-95% Calcined AnthraciteFC 90%-95% Calcined AnthraciteFC 90%-95% Calcined Anthracite

Package:

in MT bags

in 25kg bags

or as buyer's request



Q: How are carbon markets regulated?
Carbon markets are regulated through a combination of international, national, and regional frameworks that aim to ensure the integrity and transparency of emissions trading. One of the main international bodies overseeing carbon markets is the United Nations Framework Convention on Climate Change (UNFCCC), which established the Kyoto Protocol and the Paris Agreement. Under the Kyoto Protocol, an international emissions trading system was created, allowing countries to trade emission allowances through the Clean Development Mechanism (CDM) and Joint Implementation (JI) projects. The CDM and JI projects are approved and monitored by the UNFCCC, which ensures that emission reductions are real, measurable, and additional to what would have occurred without the project. The Paris Agreement, which succeeded the Kyoto Protocol, introduced a new market mechanism called the Sustainable Development Mechanism (SDM). The SDM aims to promote sustainable development and help countries achieve their climate goals by enabling emission reductions and removals through projects in developing countries. At the national and regional level, governments and regulatory bodies play a crucial role in the regulation of carbon markets. They establish legal frameworks, set emission reduction targets, and develop domestic emissions trading systems. These systems typically involve the allocation of emission allowances to companies or sectors, monitoring and reporting of emissions, and the trading of allowances on regulated platforms. To ensure the integrity of carbon markets, strict regulations are put in place to prevent fraud, double-counting, and other forms of market manipulation. Independent verification and accreditation bodies are responsible for auditing emissions data and project methodologies to ensure compliance with the established rules and standards. Furthermore, market oversight and enforcement bodies are established to monitor and enforce compliance with the regulations. These bodies have the authority to investigate and penalize any non-compliance, including imposing fines or revoking emission allowances. Overall, the regulation of carbon markets involves a complex network of international agreements, national legislation, and regulatory bodies. The aim is to create a robust and transparent market that incentivizes emission reductions and supports the transition to a low-carbon economy.
Q: What is the carbon content of different fuels?
The carbon content of different fuels varies depending on the source and composition of the fuel. Generally, fossil fuels such as coal, oil, and natural gas have high carbon content, with coal having the highest. Renewable fuels like biofuels and biomass also contain carbon, but their carbon content can vary depending on the feedstock and production process. On the other hand, carbon-neutral fuels like hydrogen and electricity have negligible carbon content, as they do not produce carbon dioxide when burned.
Q: What kinds of barbecue carbon do you have?
The disadvantage is more expensive. Ordinary charcoal advantages are cheap, disadvantages are different sizes, barbecue uneven fire, burning time is short, the process of baking carbon must be added. The mechanism of carbon is actually a mixture of carbon and coal, pressed into the multi hollow prism, from carbon containing ash on the look out the composition of coal.
Q: What is carbon?
Life on Earth depends on carbon, a chemical element that is found in all living organisms. It serves as the foundation for the organic compounds that compose our bodies, including proteins, carbohydrates, lipids, and nucleic acids. Carbon can be found in different forms, such as graphite and diamonds, and has the remarkable ability to form strong bonds with other elements. This versatility makes it essential in various natural processes like photosynthesis, respiration, and the carbon cycle, which helps regulate the Earth's climate. Moreover, carbon plays a significant role in industry, where it is utilized as a raw material for producing fuels, plastics, and countless other goods. Overall, carbon is a crucial element that sustains life and drives numerous chemical and biological processes.
Q: What are the effects of carbon emissions on the stability of wetlands?
Carbon emissions have significant effects on the stability of wetlands. Increased carbon emissions contribute to global warming, causing rising temperatures and altered precipitation patterns, which in turn lead to changes in the hydrological cycle. These changes impact the water balance and distribution within wetland ecosystems, potentially resulting in increased drying and loss of water-dependent vegetation. Additionally, carbon emissions can lead to increased acidity in wetland waters, which can harm aquatic life and disrupt the delicate balance of the ecosystem. Overall, carbon emissions pose a significant threat to wetlands, jeopardizing their stability and the many benefits they provide, such as water filtration, carbon sequestration, and habitat for diverse plant and animal species.
Q: What are the impacts of carbon emissions on ecosystems?
Carbon emissions have significant impacts on ecosystems. Increased levels of carbon dioxide in the atmosphere contribute to global warming, leading to changes in temperature and climate patterns. This can disrupt ecosystems by altering the timing of natural events, such as flower blooming or bird migration, and affecting the availability of resources like water and food. Additionally, carbon emissions can lead to ocean acidification, which harms marine life and coral reefs. Overall, carbon emissions pose a threat to the balance and functioning of ecosystems, ultimately impacting biodiversity and the health of our planet.
Q: Carbon content of fly ash and fly ash roasted vector what is the relationship?
The loss of coal ash is mainly caused by the incomplete combustion of coal, the remaining carbon is introduced, and the carbon content is high, then the amount of burning is high. From the color, it can be clearly seen that the black fly ash has high carbon content and high ignition loss. Based on the molecular weights of C and CO2, a preliminary estimate is made.
Q: How does carbon affect the formation of landslides?
Carbon does not directly affect the formation of landslides. Landslides are primarily triggered by natural factors such as heavy rainfall, earthquakes, or volcanic activity, or by human activities such as deforestation or construction. However, carbon indirectly plays a role in landslides through its impact on the environment. Excessive carbon dioxide (CO2) emissions, primarily caused by human activities such as burning fossil fuels and deforestation, contribute to climate change. Climate change leads to more frequent and intense rainfall events, which can increase the likelihood of landslides. Increased rainfall can saturate the soil, making it heavier and more prone to sliding, especially on steep slopes. Another way carbon can indirectly affect landslides is through deforestation. Trees play a crucial role in stabilizing slopes by anchoring the soil with their root systems. When forests are cleared for agriculture, urbanization, or logging, the loss of tree cover weakens the soil's stability and increases the risk of landslides. Additionally, the removal of vegetation reduces the absorption of rainfall, leading to increased surface runoff and erosion, further destabilizing slopes and making them more susceptible to landslides. In conclusion, while carbon itself does not directly cause landslides, its impact on climate change and deforestation can indirectly contribute to the occurrence and severity of landslides. It is important to address carbon emissions and promote sustainable land management practices to mitigate the risk of landslides and maintain the stability of slopes.
Q: The difference between double offset paper and carbon free printing paper
The use of the two is entirely different.Double offset paper is a printing paper. It is a higher quality printing paper. The contrast, flexibility and surface strength have higher requirements, and the acidity and basicity of the paper should be close to neutral or weak alkaline.Double gummed paper refers to printing paper, also called offset paper. Culture, printing paper paper one of the typical representative, in the business of two-sided offset paper (two-sided offset paper) commodity name, the old road / Taiwan area with a ream of paper, also called die rough paper.Carbon free copy is just typing paper and coating. Paint is divided into two kinds, one kind of colored, one kind of colorless.
Q: How are carbon-based polymers synthesized?
Polymerization is the process by which carbon-based polymers are created. It entails the chemical reaction of small molecules called monomers to form long chains of repeating units, known as polymers. Organic polymers, or carbon-based polymers, are composed of carbon atoms bonded together in a backbone structure. There are several methods for synthesizing carbon-based polymers, with addition polymerization being the most common. Addition polymerization occurs when monomers containing unsaturated carbon-carbon double bonds, like ethylene or propylene, undergo a reaction initiated by a catalyst. This catalyst can be heat, light, or a chemical initiator, and it causes the monomers to join together, forming a polymer chain. Another method for synthesizing carbon-based polymers is condensation polymerization. In this process, two different types of monomers react with each other, resulting in the elimination of a small molecule, such as water or alcohol. The remaining monomers then continue to react, forming a polymer chain. Polyesters and polyamides are examples of polymers synthesized through condensation polymerization. In addition to these methods, other techniques like ring-opening polymerization and step-growth polymerization are also used to synthesize carbon-based polymers. Ring-opening polymerization involves the opening of cyclic structures to form linear polymer chains, while step-growth polymerization involves the reaction of two or more monomers with reactive end groups. In conclusion, the synthesis of carbon-based polymers involves combining monomers through various chemical reactions to form long chains of repeating units. These polymers find wide applications in industries such as plastics, textiles, and electronics, thanks to their desirable properties such as strength, flexibility, and thermal stability.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches