• FC 90% Calcined Anthracite System 1
  • FC 90% Calcined Anthracite System 2
FC 90% Calcined Anthracite

FC 90% Calcined Anthracite

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT OR LC
Min Order Qty:
-
Supply Capability:
-

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Calcined Anthracite is produced using the best Anthracite-Taixi Anthracite wich is with low S and P, It is widely used in steel making and casting as carbon additive, and it is also widely used in Chemical, carbon materials production and some other fields.

General Specification of Calcined Anthracite:


PARAMETER   UNIT GUARANTEE VALUE

F.C.%

95MIN

94MIN

93MIN

92MIN

90MIN

ASH %

4MAX

5MAX

6MAX

7MAX

8MAX

V.M.%

1 MAX

1MAX

1.5MAX

1.5MAX

1.5MAX

SULFUR %

0.5MAX

0.5MAX

0.5MAX

0.5MAX

0.5MAX

MOISTURE %

0.5MAX

0.5MAX

0.5MAX

0.5MAX

0.5MAX


Size can be adjusted based on buyer's request.

Pictures of Calcined Anthracite:

FC 90%-95% Calcined AnthraciteFC 90%-95% Calcined AnthraciteFC 90%-95% Calcined AnthraciteFC 90%-95% Calcined Anthracite

The package will be adjusted based on buyer's request.




Q: What kinds of barbecue carbon do you have?
The disadvantage is more expensive. Ordinary charcoal advantages are cheap, disadvantages are different sizes, barbecue uneven fire, burning time is short, the process of baking carbon must be added. The mechanism of carbon is actually a mixture of carbon and coal, pressed into the multi hollow prism, from carbon containing ash on the look out the composition of coal.
Q: What are greenhouse gases?
Greenhouse gases are gases that trap heat in the Earth's atmosphere, contributing to the greenhouse effect. They include carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and fluorinated gases. These gases are naturally occurring and are also emitted through human activities such as burning fossil fuels, deforestation, and industrial processes. The greenhouse effect is vital for life on Earth as it helps to keep the planet warm enough to support life. However, excessive emissions of greenhouse gases have caused an imbalance in the atmosphere, leading to global warming and climate change. It is important to reduce greenhouse gas emissions and find sustainable alternatives to mitigate the impacts of these gases on our planet.
Q: What is carbon fixation?
Living organisms, particularly plants and algae, convert atmospheric carbon dioxide (CO2) into organic compounds through carbon fixation. This process is crucial for sustaining life on Earth and is an integral part of the natural carbon cycle. Through photosynthesis, green plants utilize sunlight, water, and CO2 to generate glucose and oxygen. Glucose acts as a foundational component for various organic molecules like carbohydrates, lipids, and proteins. Carbon fixation not only supports plant growth and development but also maintains a proper balance of atmospheric CO2 levels. It aids in the mitigation of the greenhouse effect by extracting CO2 from the atmosphere and storing it in biomass or soil. Moreover, carbon fixation serves as an essential source of energy and nutrients for other organisms that consume plants or algae. Ultimately, carbon fixation is a fundamental process that contributes to the stability and functionality of ecosystems and holds significant implications for climate change and the global carbon cycle.
Q: What are the different types of carbon-based pigments?
The different types of carbon-based pigments include carbon black, graphite, charcoal, and lampblack.
Q: How is carbon stored in the Earth's crust?
Carbon is stored in the Earth's crust in various forms and geological processes. One primary way carbon is stored is through the formation of sedimentary rocks such as limestone, dolomite, and chalk. These rocks are primarily composed of calcium carbonate, which is derived from the shells and skeletons of marine organisms that lived millions of years ago. Over time, these remains accumulate on the ocean floor and are compacted and cemented to form sedimentary rocks, effectively trapping carbon within them. Another way carbon is stored in the Earth's crust is through the process of carbonation. Carbon dioxide (CO2) from the atmosphere can dissolve in water and react with certain minerals such as basalt, forming carbonate minerals like calcite or magnesite. This process occurs naturally through chemical weathering and volcanic activity, and it helps sequester carbon within the Earth's crust. Additionally, organic carbon is stored in the form of fossil fuels such as coal, oil, and natural gas. These fossil fuels are the remains of ancient plants and microorganisms that lived and died millions of years ago. Over time, the organic matter is buried and subjected to high pressure and temperature, undergoing a process called diagenesis, which eventually converts it into fossil fuels. These deposits act as reservoirs of carbon in the Earth's crust. Overall, the Earth's crust acts as a significant carbon sink, effectively storing carbon through various processes such as the formation of sedimentary rocks, carbonation, and the accumulation of fossil fuels. However, it is important to note that human activities, particularly the burning of fossil fuels, are releasing substantial amounts of stored carbon into the atmosphere, contributing to global climate change.
Q: What are the impacts of carbon emissions on the stability of estuaries?
Carbon emissions have significant impacts on the stability of estuaries, which are delicate and unique ecosystems where freshwater and saltwater mix. One of the main consequences of carbon emissions is the phenomenon of ocean acidification. As carbon dioxide is released into the atmosphere through human activities such as burning fossil fuels, a portion of it is absorbed by the ocean, leading to an increase in the acidity of the water. This increased acidity has detrimental effects on the stability of estuaries. Estuaries are home to a diverse range of marine life, including fish, shellfish, and plants. However, the increased acidity caused by carbon emissions disrupts the delicate balance of these ecosystems. Many species of shellfish, such as oysters and clams, rely on calcium carbonate to build their shells and skeletons. In more acidic waters, the availability of carbonate ions decreases, making it harder for these organisms to form and maintain their protective structures. This can lead to a decline in shellfish populations, affecting the entire estuarine food chain. Additionally, the increased acidity affects the reproductive processes of many marine organisms. Fish and other species that reproduce in estuaries may experience reduced reproductive success due to changes in the pH of the water. This can result in a decline in population numbers, leading to a loss of biodiversity within estuaries. Furthermore, the stability of estuaries is also impacted by the rising sea levels caused by carbon emissions. As global temperatures increase, glaciers and ice caps melt, causing the sea level to rise. Estuaries, which are often located in low-lying coastal areas, are particularly vulnerable to this phenomenon. The rising sea levels can lead to increased salinity levels in estuaries, as saltwater intrudes further into freshwater areas. This can disrupt the delicate balance of the ecosystem, affecting the plants and animals that rely on specific salinity levels for survival. In conclusion, carbon emissions have a range of negative impacts on the stability of estuaries. The phenomenon of ocean acidification disrupts the delicate balance of these ecosystems, affecting the reproduction and survival of various species. Additionally, the rising sea levels caused by carbon emissions further destabilize estuaries by altering salinity levels. It is crucial to reduce carbon emissions and mitigate the effects of climate change to protect and preserve these valuable ecosystems.
Q: How is carbon used in the water treatment process?
Carbon is used in the water treatment process in a variety of ways. One common method is through the use of activated carbon, which is highly porous and has a large surface area. This allows it to effectively adsorb and remove impurities from water. Activated carbon is often used in the form of granules, pellets, or blocks in water treatment facilities. It can be added to the water during different stages of the treatment process. For example, during the initial filtration stage, activated carbon can be used to remove particles, such as sediment and chlorine byproducts, that can affect the taste and smell of the water. Additionally, activated carbon is effective in removing organic compounds, such as pesticides, herbicides, and industrial chemicals, that may be present in the water. These compounds can be harmful to human health if consumed, so the use of activated carbon helps to ensure the water is safe for drinking. Another way carbon is used in water treatment is through the process of carbonation. This involves the injection of carbon dioxide gas into the water, which helps to lower its pH level. Carbonation is often used in the treatment of alkaline water sources, as it helps to neutralize the water and make it more suitable for consumption. Overall, carbon plays a crucial role in the water treatment process by effectively removing impurities and improving the quality of drinking water. Its adsorption capabilities make it a valuable tool in ensuring that water is safe and healthy for consumption.
Q: What is carbon dating and how does it work?
Carbon dating is a scientific method used to determine the age of organic materials, such as plant or animal remains, by measuring the amount of radioactive carbon-14 present in the sample. Carbon-14 is a naturally occurring isotope of carbon that is constantly formed in the atmosphere through the interaction of cosmic rays with nitrogen atoms. Living organisms absorb carbon-14 while they are alive, and the level of carbon-14 in their tissues remains relatively constant. However, once an organism dies, it no longer takes in carbon-14, and the amount of carbon-14 in its remains gradually decreases over time through radioactive decay. By comparing the ratio of carbon-14 to stable carbon-12 in a sample, scientists can estimate the age of the organic material using known decay rates.
Q: What are the meanings of carbon, graphite, burr, two cuts and four cuts in steel?.
Flash is to flash, or two bending. Two cuts; one cut two on average, three segments, four cuts; an average cut of four, and five segments. The back is industry talk.
Q: What are the different colors of carbon-based gemstones?
The different colors of carbon-based gemstones include white, yellow, brown, black, and the rare blue and pink diamonds.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches