• Ductile Iron Pipe Pull Strength:420 ISO2531 DN500-DN800 System 1
  • Ductile Iron Pipe Pull Strength:420 ISO2531 DN500-DN800 System 2
Ductile Iron Pipe Pull Strength:420 ISO2531 DN500-DN800

Ductile Iron Pipe Pull Strength:420 ISO2531 DN500-DN800

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT or LC
Min Order Qty:
1000 m.t.
Supply Capability:
200000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

1.Ductile Iron Pipe Description :
1) Pipes confirm to ISO2531,K9 class,T type joint,6m long,with inside cements lining conform to ISO4179,  outside Zinc 
spraying(130g/m2) and bitumen coating(70μm) conform to ISO8179.
2) Pipe ends: Spigot and socket ends, with 100% SBR rubber gaskets accoding to ISO4633
3) we can do third party inspection according to customer's request.
4) Our products have been sold to many international market, such as Middle East and South East Asia and Africa.

2.Main Features of the Ductile Iron Pipe:
1).Quality guarantee
•  Chemical checking
•  NDE after rough machining
•  Mechanical testing after heat treatment
•  Final NDE,dimension inspected
2).Service
•  Drawing: we can translate your original drawing, offer best suggestion on design
•  Quality: we have full set quality control system to guarantee the best quality.
•  Inspection: inspect in house, all our products must be checked 3 times before packing
3.Ductile Iron Pipe Images:

4.Ductile Iron Pipe Specification:

Surface Finishes: Bare, Oiled, Mill Varnish, Galv,FBE, FBE Dual, 3LPE, 3LPP, Coal Tar,Concrete Coating and Tape Wrap
End Finishes: Beveled, Square Cut, Threaded, hat
Additional Services: Internal Coating
Packaging: packed in bag, plastic bag, steel strip, steel wire,double wire, iron box, wooden box, tarpaulin, plastic 
sheeting
Inspection: MOODY SGS BV GL DNV ABS LIOYD’S
Test: X-ray, UT, magnetic particle,inspection,hydrostatic test.
Processing service: Beveling, Threading, Slotting, Cut-to length, Bends, Quench and Temper, Fabrication, Double-jointing 
and On-site assistance
Documentary: MTC, material certification,Origin certification, CI or PI,Test Report, export licence, handling order, 
B/L,insurance policy,shipping instructions, contract, packing list etc. 

5.FAQ:
We have organized several common questions for our clients,may help you sincerely:
1.Q: Why would you choose ductile iron pipe rather than other pipe materials?
 A:The reasons are obvious for that not only ductile iron pipe possesses the inherent strength and flexibility of ductile 
iron, combined with proven corrosion protection systems, but also the cost savings can be achieved from design to 
installation and commissioning.
 2.Q:Why can you guarantee the inner of pipes can’t be corroded?
 A: High alumina cement mortar lining and sulphate-resistant cement mortar lining. These two special linings are applicable 
to inner anti-corrosion for sewage pipes, improving resistance to erosion of the sewage components.

Q: What are the differences between ductile cast iron pipes and centrifugal ductile iron pipes?
Small, thin pipe fittings are usually rolled or continuously cast, and large, thick pipes are usually centrifugally cast. Compared to sand casting, the tissue is compact and homogeneous.
Q: Are ductile iron pipes prone to external corrosion?
Ductile iron pipes are generally not prone to external corrosion. This is due to the protective nature of the material itself. Ductile iron pipes are made of a strong and durable material that contains a significant amount of graphite. The graphite acts as a natural barrier against external corrosion, preventing the pipe from being affected by rust or other forms of oxidation. Additionally, ductile iron pipes are often coated with a protective layer, such as cement mortar or polyethylene, to further enhance their resistance to corrosion. These coatings provide an extra layer of protection, preventing any contact between the pipe and corrosive substances in the environment. However, it should be noted that while ductile iron pipes are generally resistant to external corrosion, they may still be susceptible to localized corrosion in certain conditions. Factors such as soil composition, moisture content, and the presence of certain chemicals can potentially lead to the corrosion of ductile iron pipes in specific areas. Therefore, proper maintenance and regular inspections are necessary to identify and address any potential corrosion issues promptly. Overall, ductile iron pipes are considered to be highly resistant to external corrosion, but like any other material, they require proper care and maintenance to ensure their long-term durability and reliability.
Q: How does ductile iron pipe handle soil movements and settlements?
Ductile iron pipe has gained a reputation for effectively managing soil movements and settlements. Its ability to accommodate ground shifts and settling without compromising its structural integrity is attributed to its flexibility and durability. A notable characteristic of ductile iron pipe lies in its inherent strength and resilience. It can endure external pressures and stress caused by soil movements, including lateral forces and ground settlement. This is due to its high tensile strength, which enables it to resist deformation and maintain its shape even under substantial loads. Furthermore, the flexibility of ductile iron pipe plays a crucial role in its capacity to handle soil movements. The pipe's natural flexibility allows it to absorb the impacts of ground shifts and movements without fracturing or breaking. It can bend and adjust to changes in the surrounding soil, minimizing the risk of pipe failure or leakage. Additionally, the joint design of ductile iron pipe contributes to its effectiveness in managing soil movements and settlements. The installation employs a push-on joint system that permits some movement and settlement without compromising the overall integrity of the pipeline. The joints can absorb and distribute stress and movement, minimizing the risk of pipe failure. In conclusion, ductile iron pipe excels in managing soil movements and settlements. Its strength, flexibility, and joint design enable it to withstand external pressures resulting from ground shifts, settling, and other soil movements. As a result, ductile iron pipe is a reliable choice for a range of applications where soil movement is a concern.
Q: What is the expected thermal expansion coefficient of ductile iron pipes?
The thermal expansion coefficient of ductile iron pipes can vary due to several factors, such as the iron's specific composition and the temperature range of pipe usage. However, as a general rule, ductile iron pipes typically have a thermal expansion coefficient ranging from 10 to 14 x 10^-6 per degree Celsius (10-14 μm/m°C). This means that for every increase of one degree Celsius in temperature, the length of a ductile iron pipe will expand by approximately 10 to 14 micrometers per meter. It is important to acknowledge that these values are not exact and may differ depending on the specific circumstances and application of the pipes.
Q: How are ductile iron pipes protected against external soil loads?
Ductile iron pipes are protected against external soil loads through several methods. One of the primary methods is the use of a protective coating on the exterior surface of the pipe. This coating acts as a barrier between the iron pipe and the surrounding soil, preventing direct contact and reducing the risk of corrosion. Another method of protection is the use of trench backfill materials. The soil used for backfilling is carefully selected and compacted to provide adequate support and load distribution for the pipe. This helps to minimize the stress and pressure exerted on the pipe by the surrounding soil. Additionally, the design and installation of the pipe system play a crucial role in protecting ductile iron pipes against external soil loads. The pipes are typically laid in a properly engineered trench, which includes appropriate bedding and backfilling techniques to ensure stability and minimize the potential for damage. Furthermore, the use of proper pipe jointing techniques is essential for protecting against external soil loads. Joints are often designed to be flexible, allowing for some movement and accommodating external loads. This helps to distribute the stress along the length of the pipe and prevents concentrated pressure points that could lead to failure. Overall, a combination of protective coatings, appropriate backfill materials, proper installation techniques, and joint design contribute to the effective protection of ductile iron pipes against external soil loads. This ensures the longevity and reliability of the pipe system, even in challenging soil conditions.
Q: How do ductile iron pipes perform in seismic zones?
Due to their unique characteristics and design features, ductile iron pipes have demonstrated exceptional performance in seismic zones. These pipes possess the ability to withstand ground movements, vibrations, and other seismic forces that may arise during an earthquake. The flexibility inherent in ductile iron pipes enables them to absorb and distribute the energy generated by seismic activities. This flexibility prevents the pipes from fracturing or breaking when subjected to intense ground shaking. Moreover, the high strength and resilience of ductile iron make it highly resistant to damage caused by ground movements. Furthermore, ductile iron pipes are designed with joints that are restrained, providing increased stability and resistance against seismic forces. These joints can accommodate small lateral movements without compromising the integrity of the pipeline system. Additionally, the restrained joints prevent the pipes from becoming disconnected or misaligned during seismic events, guaranteeing the uninterrupted flow of water or other fluids. In seismic zones where the ground is more susceptible to liquefaction or soil settlement, ductile iron pipes are often installed using methods that enhance their stability. For example, deep embedment techniques or the inclusion of thrust blocks at bends and fittings increase the pipes' resistance to lateral forces exerted by the ground. Regular inspection and maintenance further enhance the performance of ductile iron pipes in seismic zones. Periodic assessments can identify any potential weaknesses or damages that may have occurred during seismic events, enabling prompt repairs or replacements. Overall, ductile iron pipes have a well-established track record of reliable performance in seismic zones. Their flexibility, strength, and design characteristics make them highly resilient against seismic forces, ensuring the safe and uninterrupted supply of water or other fluids, even in earthquake-prone areas.
Q: Are ductile iron pipes more resistant to breaks and cracks than other pipe materials?
Yes, ductile iron pipes are generally more resistant to breaks and cracks compared to other pipe materials. Their unique composition and manufacturing process make them highly durable and flexible, allowing them to withstand high pressure, heavy loads, and ground movement without breaking or cracking easily.
Q: How does ductile iron pipe handle soil movement?
Ductile iron pipe possesses exceptional strength and durability, making it highly effective in managing soil movement. When the surrounding soil shifts or settles, ductile iron pipes can flex and adapt to this movement without compromising their structural integrity. The ability of ductile iron pipes to handle soil movement stems from their inherent capacity to endure bending and stretching. They have a remarkable level of flexibility, allowing them to adjust to ground shifts and settle without experiencing any breakage or cracks. This flexibility arises from the distinctive material properties of ductile iron, a type of cast iron that has been treated with magnesium to enhance its strength and elasticity. Furthermore, ductile iron pipes are constructed with a thick wall, which enhances their resistance against soil movement. This robust construction assists in distributing the forces exerted by the shifting soil, minimizing the impact on the pipe and preventing significant damage. Moreover, ductile iron pipes are typically installed with suitable bedding and backfill materials to provide additional support and stability. This involves using compacted soil or engineered granular materials around the pipe, which helps evenly distribute the load and reduces the potential for soil movement. Overall, ductile iron pipe is an excellent choice for areas with high soil movement, such as regions with expansive or unstable soils. Its flexibility, strength, and proper installation techniques enable it to effectively handle the challenges presented by soil movement, ensuring long-lasting and dependable performance in various applications.
Q: How does ductile iron pipe perform in areas with high soil consolidation?
Ductile iron pipe performs exceptionally well in areas with high soil consolidation. The inherent strength and flexibility of ductile iron make it a suitable choice for underground installations where the soil tends to consolidate, or settle, over time. In areas with high soil consolidation, the ground often experiences significant movement and settling, which can pose challenges for buried infrastructure. However, ductile iron pipe's unique characteristics enable it to withstand these conditions. Firstly, ductile iron has a high tensile strength, which means it can resist external forces and pressures exerted by the surrounding soil. This strength allows the pipe to maintain its structural integrity even in areas with high soil consolidation. Secondly, ductile iron is highly resistant to deformation and can handle ground movement without cracking or breaking. The pipe's flexibility allows it to absorb the lateral forces associated with soil consolidation and prevents it from being damaged. Additionally, ductile iron pipe is known for its durability and long service life. It is resistant to corrosion, abrasion, and chemical attacks, further enhancing its performance in areas with high soil consolidation. This resistance ensures that the pipe remains intact and functional, even in challenging soil conditions. Moreover, ductile iron pipe's joints are designed to provide a secure and leak-free connection. This eliminates the risk of soil infiltration, which can potentially worsen soil consolidation and lead to further ground movement. In summary, ductile iron pipe performs exceptionally well in areas with high soil consolidation due to its strength, flexibility, durability, and leak-free joints. Its ability to withstand ground movement and maintain its structural integrity makes it a reliable option for underground installations in such conditions.
Q: How can the connection of ductile iron pipe elbow be convenient for connecting?
The groove connecting pipe consists of two categories of products: sealing function of pipe connections with rigid joint, flexible joint, mechanical three and groove flange; the pipe connections transition of elbow, three links, four links, different diameter pipe, blind plate etc..

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords