• DUCTILE IRON PIPE C Class DN125 System 1
  • DUCTILE IRON PIPE C Class DN125 System 2
  • DUCTILE IRON PIPE C Class DN125 System 3
  • DUCTILE IRON PIPE C Class DN125 System 4
DUCTILE IRON PIPE C Class DN125

DUCTILE IRON PIPE C Class DN125

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT OR LC
Min Order Qty:
-
Supply Capability:
-

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Ductile Iron Cast Pipe is without any defects compare with tradition casting tech, which has many advantages particularly as follow:

(1) High density. In the "vertical upward casting" process, the melt iron of centre liquid column in center crystallizer is continuously feeding for volume shrinkage caused by condensation tube at outer circumference , which lead to be free of shrinkage porosity.

(2) High purity. When melt iron pouring, the mixed impurities such as gas, dross, sand grain which are lighter than melt iron could be eliminated at furnace mouth, its impossible to enter into the crystallizer through the channel, so the melt iron into the crystallizer is very pure.

(3) Strength with toughness. The cooling speed provided by continuous crystallizer is 30 times than sand casting and 5 times than centrifugal casting, and doesn't produce white iron, the eutectic cell volume of continuous cast iron is one eighth to one tenth compare with traditional cast iron. The density of graphite nodule in ductile iron can reach 300-700 pcs/mm2. Therefore, all reason above improve the strength and toughness of continuous cast iron.

(4) Free machining. The high speed cooling make the hardening phase (such as boride, steadite) not appear like reticular, massive or thick, but diffuse like fish bone and pane in shape, moreover, there are tiny graphite flakes inlaid hardening phase. It's free machining in BrinellHardness the range of 250-300HB. However, the Brinell Hardness of 250 is top limit to common metal materials.

(5) Uniform composition of tube wall. The convection mixing of liquid column caused by marching type drawing in crystallizer make the composition of tube wall well-distributed, and concentration gradient very little.

(6) High productivity. To the wall thickness of tube under 10mm, the speed of continuous casting is 1 meter/min, to the wall thickness of tube under 20mm, the speed of continuous casting is 0.5 meter/min, which is high efficiency that centrifugal or other casting tech couldn't reach.


Q: What's the difference between cast iron pipe and steel pipe?
Steel pipe is not only used to transport fluid and powder solid, exchange heat energy, and manufacture mechanical parts and containers, but also is an economic steel. It can reduce weight and save 20 to 40% of metal by using steel pipe to make building structure, network frame, prop and mechanical support. Moreover, it can realize factory mechanization construction. Using steel pipe to manufacture road bridge can not only save steel, simplify construction, but also greatly reduce the area of coating protective layer, save investment and maintenance cost.
Q: How do ductile iron pipes perform in seismic zones?
Ductile iron pipes have proven to perform exceptionally well in seismic zones due to their unique characteristics and design features. These pipes are known for their ability to withstand ground movements, vibrations, and other seismic forces that may occur during an earthquake. The inherent flexibility of ductile iron pipes allows them to absorb and distribute the energy generated by seismic activities. This flexibility helps prevent the pipes from fracturing or breaking under intense ground shaking. Additionally, the high strength and resilience of ductile iron make it highly resistant to damage caused by ground movements. Furthermore, ductile iron pipes are designed with restrained joints, which provide added stability and resistance to seismic forces. These joints can accommodate small lateral movements without compromising the integrity of the pipeline system. The restrained joints also prevent the pipes from becoming disconnected or misaligned during seismic events, ensuring the continuous flow of water or other fluids. In seismic zones, where the ground is more prone to liquefaction or soil settlement, ductile iron pipes are often installed using methods that enhance their stability. For instance, the use of deep embedment techniques or the incorporation of thrust blocks at bends and fittings increases the resistance of the pipes to the lateral forces exerted by the ground. The performance of ductile iron pipes in seismic zones is further enhanced by regular inspection and maintenance. Periodic assessments can detect any potential weaknesses or damages that may have occurred during seismic events, allowing for timely repairs or replacements to be made. Overall, ductile iron pipes have a proven track record of reliable performance in seismic zones. Their flexibility, strength, and design characteristics make them highly resilient to seismic forces, ensuring the safe and uninterrupted supply of water or other fluids even in areas prone to earthquakes.
Q: Can ductile iron pipe be used for water treatment plant sludge handling?
Yes, ductile iron pipe can be used for water treatment plant sludge handling. Ductile iron pipe is known for its strength and durability, making it suitable for handling various types of fluids, including sludge. It can withstand the corrosive nature of sludge and is resistant to abrasion, which is important in a sludge handling system. Additionally, ductile iron pipe has a smooth interior surface, which helps to prevent clogs and allows for efficient flow of the sludge. Overall, ductile iron pipe is a reliable choice for water treatment plant sludge handling.
Q: What is the expected buoyancy of ductile iron pipes?
The expected buoyancy of ductile iron pipes can vary depending on several factors such as the diameter, wall thickness, and the specific gravity of the fluid being transported. However, in general, ductile iron pipes are known for their relatively low buoyancy compared to other materials like plastic or concrete. Due to their higher density and weight, ductile iron pipes tend to have a greater resistance to buoyancy forces. This makes them suitable for applications where buoyancy is a concern, such as water and wastewater transmission systems. The combination of their inherent strength and weight helps to keep the pipes grounded and prevents them from floating or rising to the surface. It is important to note that even though ductile iron pipes have lower buoyancy compared to other materials, they may still experience some level of buoyancy in certain scenarios, especially when the fluid being transported has a lower specific gravity. To mitigate this potential issue, additional measures such as anchoring or ballasting may be employed to ensure the stability and integrity of the pipeline system. Overall, while the expected buoyancy of ductile iron pipes is generally low, it is crucial to consider the specific conditions and requirements of the project to determine the most appropriate pipe material and design for optimal performance and safety.
Q: What are the environmental benefits of using ductile iron pipe?
There are several environmental benefits associated with using ductile iron pipe in various applications. Firstly, ductile iron is a highly durable material that can withstand harsh environmental conditions and has a long lifespan. This means that ductile iron pipes require less frequent replacements compared to other pipe materials, reducing the need for resource-intensive manufacturing processes and minimizing the disposal of old pipes. Secondly, ductile iron pipes have excellent corrosion resistance properties, which reduces the risk of leaks and pipe failures. This not only prevents potential water contamination but also minimizes the wastage of water resources. Additionally, ductile iron is a recyclable material. At the end of its useful life, ductile iron pipes can be melted down and used to manufacture new products, reducing the demand for virgin materials and conserving natural resources. Furthermore, the manufacturing process of ductile iron pipe has improved significantly over the years, resulting in reduced energy consumption and emissions. Today, many manufacturers use energy-efficient technologies and practices to produce ductile iron pipes, contributing to a lower carbon footprint and reduced air pollution. Lastly, ductile iron pipes have a smooth internal surface that minimizes friction and allows for efficient water flow. This can lead to energy savings in pumping and distribution systems, as less energy is required to transport water through the pipeline network. Overall, using ductile iron pipe can have a positive impact on the environment by reducing waste, conserving resources, minimizing pollution, and improving energy efficiency in water distribution systems.
Q: Are ductile iron pipes suitable for installation in areas with high traffic loads?
Yes, ductile iron pipes are suitable for installation in areas with high traffic loads. Due to their inherent strength and durability, ductile iron pipes can withstand heavy loads and are commonly used in applications where there is significant vehicular traffic.
Q: What is the expected abrasion resistance of ductile iron pipes?
Ductile iron pipes possess a high level of abrasion resistance, which is widely acknowledged. These pipes are renowned for their durability and strength, making them suitable for a range of applications, such as the conveyance of water, sewage, and other fluids. The composition of ductile iron pipes, containing significant amounts of carbon and silicon, contributes to their ability to withstand abrasion. The design of ductile iron pipes is specifically tailored to withstand the abrasive forces that can arise during fluid transportation. These pipes feature a smooth internal surface, which reduces friction and minimizes the risk of abrasion. Moreover, the inherent toughness and resistance to wear and tear exhibited by the material make ductile iron pipes less susceptible to damage caused by abrasive particles or debris present in the fluid flow. However, it is crucial to understand that the expected abrasion resistance of ductile iron pipes can vary depending on several factors, including the velocity and nature of the transported fluid, the presence of corrosive substances, and the installation conditions. In certain instances, additional protective measures, like linings or coatings, may be necessary to bolster the pipes' resistance to abrasion. In conclusion, ductile iron pipes are renowned for their exceptional abrasion resistance, but it is always advisable to consider specific application requirements and seek advice from experts to ensure the appropriate selection and installation of the pipes, thereby guaranteeing optimal performance and longevity.
Q: Can the sealing ring of ductile iron pipe be reused?
It is better not to have used things, easy aging, sealed, the best to use new
Q: How do ductile iron pipes perform in earthquake-induced ground movements?
Ductile iron pipes have been proven to be a dependable and resilient choice for underground infrastructure, even in earthquake-prone regions. The distinctive qualities of ductile iron, such as its strength and flexibility, enable it to withstand the impacts of ground movements during an earthquake. When an earthquake occurs, the ground shakes and shifts, exerting significant forces on underground pipes. Ductile iron pipes possess the ability to flex under these forces, absorbing the energy and minimizing the risk of failure. They can endure substantial ground movements without cracking or breaking, guaranteeing the uninterrupted flow of water or other fluids. Moreover, ductile iron pipes exhibit exceptional resistance to corrosion and are highly durable, making them suitable for long-term use in areas susceptible to earthquakes. This reduces the necessity for frequent maintenance or replacement, providing cost-effective and reliable solutions for infrastructure. Additionally, the joints employed in ductile iron pipe installations are designed to accommodate movement and permit slight adjustments during ground shifts. This adaptability prevents the pipes from becoming dislodged or separated, preserving the system's integrity. Overall, ductile iron pipes have a well-established reputation for their performance in earthquake-induced ground movements. They offer resilience, flexibility, and durability, ensuring the uninterrupted operation of water and sewer systems, even in areas prone to seismic activity.
Q: What is the expected hydraulic performance of ductile iron pipes?
The expected hydraulic performance of ductile iron pipes is generally very high. Ductile iron pipes have a smooth inner surface that promotes efficient flow of fluids, resulting in low friction losses and high flow rates. They have excellent resistance to corrosion and abrasion, ensuring long-term performance in various water and wastewater applications. Ductile iron pipes also have a high tensile strength, allowing them to withstand high internal and external loads without deformation or failure. This makes them suitable for use in both above-ground and below-ground applications, including water distribution systems, sewage and wastewater transport, industrial piping, and irrigation systems. Furthermore, ductile iron pipes have the ability to adapt to ground movement and settle without breaking, thanks to their flexibility and resilience. This makes them a reliable choice in areas with unstable soil conditions or seismic activity. Overall, the expected hydraulic performance of ductile iron pipes is characterized by efficient flow, minimal pressure losses, durability, and the ability to withstand various external forces. These qualities make them a popular choice for water infrastructure projects, ensuring reliable and efficient transportation of fluids for a long service life.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords