• DIN 1.7225/AISI 4140 Mould Steel Round Bar System 1
  • DIN 1.7225/AISI 4140 Mould Steel Round Bar System 2
  • DIN 1.7225/AISI 4140 Mould Steel Round Bar System 3
  • DIN 1.7225/AISI 4140 Mould Steel Round Bar System 4
  • DIN 1.7225/AISI 4140 Mould Steel Round Bar System 5
  • DIN 1.7225/AISI 4140 Mould Steel Round Bar System 6
DIN 1.7225/AISI 4140 Mould Steel Round Bar

DIN 1.7225/AISI 4140 Mould Steel Round Bar

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
3 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Carbon Steel,Spring Steel,Bearing Steel,Gear Steel,Deformed Steel,Stainless Steel,Alloy Steel
Shape:
Steel Coil,Steel Sheet,Steel Wire Rod,Steel Flat Bar,Steel Square Bar,Steel Angle,Steel Round Bar,Steel Billets
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Saw,Extruded,EFW,Spring
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Certification:
ISO,SGS,BV,IBR,RoHS,CE,API,BSI,UL
Thickness:
20-350mm
Width:
20-350mm
Length:
as customers requirments
Outer Diameter:
20-350mm
Net Weight:
1m.t.
Packaging:
seaworthy packaging

DIN 1.7225/AISI 4140 Mould Steel Round Bar

Details Information of DIN 1.7225/AISI 4140 Mould Steel Round Bar

NameDIN 1.7225/AISI 4140 Mould Steel Round Bar
ShapeRound Bar/Square Bar/Flat Bar/Plate/Wire
StandardGB/ASTM/SAE/AISI/DIN/JIS/EN/BS
Surface Treatment:Black/Peeling/Polished/Machined  
Delivery Condition:Hot Rolled or Forged/Peeled or Black Surface
TestSGS/UT 100% Elements Testing
Certificate:ISO/Mill Certificate
Service:24 hours online service /
more than 20 years trading and manufacture 
Quality Assurance:the third party inspection, such as SGS, BV, TUV…etc. is acceptable
Packaging Details:Seaworthy Packaging or as per customer's packing instruction

 

Carbon structure round barQ195 Q235A Q235B 10# 20#-55# S45CB
Low alloy high strength round barQ345A/Q345C/Q345D Q345B Q345E
Alloy structure round barSAE51B20 20Cr 40Cr 40CrV 20CrMo/30CrMo/35CrMo/42CrMo 20CrMoA/30CrMoA/35CrMoA/42CrMoA/42Cr ML20CrMo/ML30CrMo/ML35CrMo/ML42CrMo B7/SCM435-440 20MnTiB 20CrMnMo 20CrMoH 42CrMoH 40MnB/40MnBH 30Mn2-40Mn2 27SiMn 50CrVA 30CrMnTi
Pinion steel20CrMnTi 20CrMnTiH 20CrMnTiHCS/20CrMnTiHLD Q20CrMnTi-1/Q20CrMnTi-2
Sucker rod20-35CrMoA
Free-cutting steelGT1215S
Spring steel60Si2MnA 65Mn
Ball bearing steelGCr15

 Chemical Composition of DIN 1.7225/AISI 4140 Mould Steel Round Bar

 C Si Mn P SCrNiCu
0.17-0.240.17-0.370.35-0.65≤0.035≤0.035≤0.25≤0.25≤0.25

 

    Tensile strength (σb/MPa)Yield strength (σb/MPa)Elongation (δ5/%)
              ≥410(42)             ≥245(25)                  ≥25

Company Introduction of DIN 1.7225/AISI 4140 Mould Steel Round Bar

CNBM International Corporation is the most import and export platform of CNBM group(China National Building Material Group Corporation) ,which is a state-owned enterprise, ranked in 270th of Fortune Global 500 in 2015.

With its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high quality series of refractories as well as technical consultancies and logistics solution.

 

DIN 1.7225/AISI 4140 Mould Steel Round Bar

DIN 1.7225/AISI 4140 Mould Steel Round Bar

 

Certificates of DIN 1.7225/AISI 4140 Mould Steel Round Bar

DIN 1.7225/AISI 4140 Mould Steel Round Bar

 

Packaging & Delivery of DIN 1.7225/AISI 4140 Mould Steel Round Bar

Packaging Detail

Sea worthy packing /as per customer's packing instruction

Delivery Detail

15 ~ 40 days after receiving the deposit

 

Products show of DIN 1.7225/AISI 4140 Mould Steel Round Bar

DIN 1.7225/AISI 4140 Mould Steel Round Bar

 

FAQ

Are you a trading company or manufacturer?

Manufacturer

What’s the MOQ?

3 metric ton

What’s your delivery time? 

15-35 days after downpayment received

Do you Accept OEM service?

Yes

what’s your delivery terms?

FOB/CFR/CIF

What's the Payment Terms?

30% as deposit,70% before shipment by T/T

Western Union acceptable for small amount.

L/C acceptable for large amount.

Scrow ,Paybal,Alipay are also ok

Why  choose  us?

Chose happens because of quality, then price, We can give you both.

Additionally, we can also offer professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposals.

What's your available port of Shipment?

Main Port, China

What’s your featured  services?

Our service formula: good quality+ good price+ good service=customer's trust

 

Where are your Market?

Covering more than 160 countries in the world

 

Q:How does special steel contribute to the renewable energy equipment industry?
Special steel plays a crucial role in the renewable energy equipment industry by providing the necessary strength, durability, and corrosion resistance required for various components. One of the key applications of special steel in this industry is in wind turbines. Wind turbine towers, blades, and gearboxes are all manufactured using special steel alloys due to their high tensile strength and resistance to fatigue. This enables wind turbines to withstand the harsh environmental conditions and operate efficiently for prolonged periods. Moreover, special steel is also extensively used in the production of solar power equipment. Solar panels are often framed using stainless steel, which offers excellent corrosion resistance and structural stability, ensuring their longevity and performance in outdoor environments. Additionally, special steel alloys are employed in the manufacturing of solar trackers, which enable solar panels to follow the sun throughout the day, optimizing their energy generation potential. In the hydroelectric power industry, special steel is employed in the construction of turbine components, such as blades, shafts, and casings. These components are subjected to high pressures, water flow, and abrasive wear, making the use of special steel essential to ensure their reliability and longevity. Furthermore, special steel is also utilized in the production of energy storage systems, such as batteries and fuel cells. These technologies require materials with high conductivity, corrosion resistance, and mechanical strength, making special steel alloys ideal for their construction. Overall, special steel contributes significantly to the renewable energy equipment industry by providing the necessary strength, durability, and corrosion resistance required for various components. Its utilization in wind turbines, solar panels, hydroelectric power systems, and energy storage technologies ensures the reliability and longevity of these equipment, ultimately promoting the growth and sustainability of the renewable energy sector.
Q:How does free-cutting steel improve machinability?
Free-cutting steel improves machinability by incorporating additives such as sulfur or lead, which form small, brittle chips during the machining process. These chips help break the metal's continuous chip formation, resulting in improved chip control, reduced tool wear, and increased machining speeds. Additionally, free-cutting steel has improved surface finish and dimensional accuracy due to the formation of short, easily-managed chips.
Q:How is special steel used in the production of engine components?
Special steel is used in the production of engine components due to its high strength, durability, and resistance to heat and corrosion. It is commonly used for manufacturing pistons, crankshafts, valves, and connecting rods, ensuring the engine's optimal performance and longevity. Additionally, special steel's ability to withstand extreme temperatures and stress makes it an ideal choice for critical engine parts, enabling them to function efficiently under demanding conditions.
Q:What are the specific requirements for special steel used in the aerospace fastener industry?
The specific requirements for special steel used in the aerospace fastener industry include high strength and hardness, excellent resistance to corrosion and fatigue, as well as the ability to withstand extreme temperatures and pressure conditions. Additionally, the steel must have good formability and machinability to ensure precise manufacturing of fasteners. It should also meet stringent industry standards and undergo thorough testing and certification processes to ensure reliability and safety in aircraft applications.
Q:What are the different surface protection methods for special steel?
Special steel can be protected using various surface protection methods, each with its own advantages and applications. Here are a few common methods: 1. Coatings: Coatings are widely used to safeguard the surface of special steel. This can involve applying paint, powder coating, or electroplating. Coatings act as a barrier, preventing corrosion and enhancing the steel's appearance. 2. Galvanization: Galvanization entails coating the special steel with a zinc layer through a hot-dip galvanizing process. This method provides excellent corrosion resistance, making it suitable for outdoor structures and equipment exposed to harsh environments. 3. Passivation: Passivation is a chemical process that eliminates surface contaminants and forms a protective oxide layer on the special steel's surface. This method improves corrosion resistance, especially for stainless steel. 4. Nitriding: Nitriding is a heat-treatment process that diffuses nitrogen into the surface of special steel, resulting in a hard and wear-resistant layer. This method enhances durability, resistance to fatigue, and corrosion resistance, making it ideal for heavy load and abrasive applications. 5. PVD and CVD coatings: Physical Vapor Deposition (PVD) and Chemical Vapor Deposition (CVD) are methods used to deposit thin films of various materials onto the surface of special steel. These coatings offer enhanced hardness, wear resistance, and low friction properties, making them perfect for cutting tools, molds, and high-performance applications. 6. Shot peening: Shot peening is a mechanical surface treatment that involves bombarding the special steel surface with small spherical particles. This process induces compressive stresses, improving fatigue life, resistance to stress corrosion cracking, and wear resistance. 7. Anodizing: Anodizing is primarily used for aluminum but can also be applied to certain special steel alloys. It creates an oxide layer on the surface, enhancing corrosion resistance and allowing for decorative finishes. Each of these surface protection methods offers distinct properties and benefits. The choice of method depends on the specific requirements of the special steel application.
Q:What are the thermal properties of special steel?
Special steel, also known as tool steel or alloy steel, possesses excellent thermal properties. It has a high melting point, allowing it to withstand extreme temperatures without losing its structural integrity. Furthermore, special steel exhibits good heat resistance, ensuring it retains its strength and hardness even when exposed to high thermal loads. Additionally, its thermal conductivity is relatively low, making it suitable for applications where heat transfer needs to be controlled or minimized. Overall, the thermal properties of special steel make it a reliable material for various industrial and engineering applications that involve high temperatures and thermal stresses.
Q:What are the different forms in which special steel is available?
Special steel is available in various forms such as bars, sheets, plates, coils, tubes, pipes, and wires.
Q:What are the properties of precipitation-hardening steel?
Precipitation-hardening steel, also known as PH steel, possesses several unique properties. Firstly, it has excellent strength and toughness, making it suitable for various demanding applications. This type of steel can be heat treated to achieve higher strength levels, allowing it to withstand heavy loads and resist deformation. Additionally, precipitation-hardening steel offers good corrosion resistance, making it ideal for use in harsh environments. It also exhibits good machinability, enabling ease of fabrication. These properties make precipitation-hardening steel a versatile material widely used in industries such as aerospace, automotive, and medical.
Q:What are the different welding techniques used for special steel?
Some of the different welding techniques used for special steel include TIG (Tungsten Inert Gas) welding, MIG (Metal Inert Gas) welding, and submerged arc welding. TIG welding is commonly used for stainless steel and allows for precise control and high-quality welds. MIG welding is versatile and can be used for a wide range of steel types, including special steel, providing fast and efficient welds. Submerged arc welding is used for thicker sections of special steel and offers excellent penetration and deposition rates.
Q:How does the microstructure of special steel affect its performance?
The microstructure of special steel plays a significant role in determining its performance. Special steels are alloyed with specific elements to enhance their properties and meet specific application requirements. The microstructure refers to the arrangement of the steel's crystalline grains and the presence of any phase transformations within the material. One critical aspect of the microstructure is the grain size. Fine-grained structures, achieved through controlled cooling or alloying additions, offer improved strength, hardness, and toughness. Smaller grain sizes hinder the movement of dislocations within the material, resulting in increased strength and hardness. This is particularly crucial in applications that require high strength-to-weight ratios, such as aerospace or automotive components. Another crucial factor is the presence of various phases in the microstructure. The addition of specific alloying elements can promote the formation of different phases, such as martensite, bainite, or ferrite. These phases have different mechanical properties, such as hardness, toughness, and corrosion resistance. By carefully controlling the microstructure, it is possible to tailor the steel's performance to specific applications. For example, martensitic structures offer high hardness and wear resistance, ideal for cutting tools, while bainitic structures provide a good balance of strength and toughness, suitable for structural components. Furthermore, the microstructure also governs the steel's response to heat treatment processes, such as quenching and tempering. Heat treatments can modify the microstructure to achieve desired mechanical properties, such as increasing hardness or improving resistance to fatigue. The microstructure's ability to transform during heat treatment allows for precise control over the steel's performance characteristics. In summary, the microstructure of special steel significantly affects its performance. Grain size, phase distribution, and response to heat treatment are all key factors that determine the steel's mechanical properties and suitability for specific applications. By understanding and manipulating the microstructure, engineers can design special steels with enhanced performance, meeting the stringent demands of various industries.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords