• Cold Drawn Carbon Steel Seamless Pipe  a210 CNBM System 1
  • Cold Drawn Carbon Steel Seamless Pipe  a210 CNBM System 2
  • Cold Drawn Carbon Steel Seamless Pipe  a210 CNBM System 3
  • Cold Drawn Carbon Steel Seamless Pipe  a210 CNBM System 4
  • Cold Drawn Carbon Steel Seamless Pipe  a210 CNBM System 5
Cold Drawn Carbon Steel Seamless Pipe  a210 CNBM

Cold Drawn Carbon Steel Seamless Pipe a210 CNBM

Ref Price:
get latest price
Loading Port:
Qingdao
Payment Terms:
TT OR LC
Min Order Qty:
10 pc
Supply Capability:
30 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Quick Details

Thickness:

1.2 - 20 mm

Section Shape:

Round

Outer Diameter:

12.7 - 168 mm



Secondary Or Not:

Non-secondary

Application:

Boiler Pipe

Technique:

Cold Drawn

Certification:

PED

Surface Treatment:

oil coating

Special Pipe:

Thick Wall Pipe

Alloy Or Not:

Is Alloy

ASTM A213:

T2,T5,T9,T11,T12,T22,T23,T91,T91

ASTM A335:

P1,P2,P5,P9,P11,P12,P22,P23,P91,P92

DIN17175:

15Mo3,10CrMo910,12CrMo195,13CrMo44

Grade:

12Cr1MoV,Cr5Mo,Cr9Mo,12Cr1MoVG,Cr5MoG,A335 P11,A335 P5,A335 P9,A335 P1,A213,A192,A210,A335 P12,A335 P23,St35.8,Cr-Mo alloy,A53-A369,ST35-ST52

Standard:

BS 3059-2,DIN EN 10216-1-2004,DIN 17175,ASTM A213-2001,ANSI A210-1996,ASTM A179-1990,BS,DIN,ASTM





Packaging & Delivery

Packaging Detail:Seaworthy export packing
Delivery Detail:45 Days

Specifications

Standard:ASTM A179,DIN17175
Material:SA179,ST35.8
Size:12*1.2-168*20
Manufacture:cold drawn
Heat treating: normalized

 

Product Description

Commodity:  cold drawn carbon steel seamless pipe

Standard&material: ASTM A213 T2,T5,T9,T11,T12,T22,T23,T91,T92, ASTM A335 P1,P2,P5,P9,P11,P12,P22,P23,P91,P92, DIN17175 15Mo3,10CrMo910,12CrMo195,13CrMo44, and equivalent standard and material.

Size range: 12mm*1.2mm - 168mm*20mm

Manufacture method: cold rolled, cold drawn

Delivery condition: Normalized, Normalized and Tempered.

Mill test certificate as per EN10204 3.1B is available.

Third party inspection is acceptable.

Tubes will be ECT+UT.


Packaging & Shipping

Packing: tubes will be packed in bundles tied with steel strips.

Oil coating,varnish,or black painting to be confirmed.

End plastic caps to be confirmed.

External packing by knit bags.

Marking: to be confirmed.


Q: What are the different types of steel pipe connections for oil and gas pipelines?
The different types of steel pipe connections for oil and gas pipelines include threaded connections, welded connections, and flanged connections. Threaded connections involve screwing the pipes together using a threaded end, which ensures a secure fit. Welded connections involve permanently joining the pipes together using welding techniques such as butt welding or socket welding. Flanged connections involve attaching flanges to the ends of the pipes and bolting them together, providing a strong and leak-proof connection.
Q: How are steel pipes used in the agriculture sector?
Steel pipes are commonly used in the agriculture sector for various purposes such as irrigation systems, water transportation, and structural support for greenhouse structures. They are also used for the construction of livestock enclosures and handling equipment. Overall, steel pipes play a crucial role in ensuring efficient and reliable operations in the agriculture industry.
Q: Can steel pipes be used for transporting hazardous materials?
Yes, steel pipes can be used for transporting hazardous materials. Steel is known for its strength and durability, making it suitable for handling and containing hazardous substances. It is commonly used in various industries, such as oil and gas, chemical, and wastewater treatment, to transport materials that pose a potential risk to human health or the environment. Additionally, steel pipes can resist corrosion and high pressure, ensuring the safe transportation of hazardous materials.
Q: What are the different manufacturing standards for steel pipes?
There are several different manufacturing standards for steel pipes, including American Society for Testing and Materials (ASTM), International Organization for Standardization (ISO), and American Petroleum Institute (API). These standards outline the requirements for various aspects of steel pipe manufacturing such as dimensions, material composition, mechanical properties, and testing procedures. Compliance with these standards ensures that steel pipes meet the necessary quality and performance requirements for their intended applications.
Q: How do you calculate the pressure drop in a steel pipe?
To calculate the pressure drop in a steel pipe, you need to consider factors such as the pipe diameter, length, flow rate, and fluid properties. The pressure drop can be determined using various formulas, such as the Darcy-Weisbach equation or the Hazen-Williams equation, depending on the specific conditions and assumptions made. These equations take into account factors like pipe roughness, viscosity, and Reynolds number to determine the pressure drop across the pipe.
Q: Are steel pipes suitable for use in acidic environments?
Steel pipes may not be suitable for use in acidic environments because they can corrode and degrade when exposed to acids, leading to potential leaks and structural issues.
Q: How do steel pipes withstand high pressure and temperature?
Steel pipes are able to withstand high pressure and temperature due to their inherent properties and construction. Steel is known for its strength and durability, making it an ideal material for pipes used in demanding applications. Firstly, steel pipes are made from high-quality steel alloys that have been specifically designed to withstand extreme conditions. These alloys are chosen for their high tensile strength, which allows the pipes to withstand the internal pressure exerted by fluids or gases flowing through them. The steel used in these pipes is often alloyed with other elements such as chromium, molybdenum, or nickel to enhance its resistance to corrosion and high temperatures. Secondly, the construction of steel pipes plays a crucial role in their ability to withstand high pressure and temperature. Steel pipes are typically manufactured using a seamless or welded process. Seamless pipes are made by piercing a solid steel billet, resulting in a continuous and uniform pipe with no seams or joints. This seamless construction eliminates weak points and ensures that the pipe can handle high pressure without any risk of leakage. Welded pipes, on the other hand, are made by joining two or more pieces of steel together using a welding process. The welds are carefully inspected and tested to ensure their integrity and strength. Although welded pipes may have seams, they are equally capable of withstanding high pressure and temperature when manufactured to the appropriate standards. Additionally, steel pipes can be further reinforced to enhance their resistance to pressure and temperature. For instance, pipes used in extremely high-pressure applications may be thicker or have additional layers of protective coatings. These measures help to increase the strength and durability of the pipes, allowing them to withstand even higher pressures and temperatures. In summary, steel pipes are able to withstand high pressure and temperature due to the strength and durability of the steel alloys used in their construction. The seamless or welded construction of these pipes eliminates weak points and ensures their ability to handle extreme conditions. Additional reinforcement and protective coatings can be applied to further enhance their resistance to pressure and temperature.
Q: Are steel pipes resistant to fire?
Yes, steel pipes are highly resistant to fire due to their high melting point and ability to withstand intense heat and flames.
Q: Can stainless steel pipes spray black paint?
Stainless steel pipes can spray black paint.The stainless steel surface with a layer of smooth surface, so the painting before the need to use corner grinder or iron brush to paint out into hair and then paint. Otherwise, spray paint can not be adhered to the surface of the stainless steel pipe.
Q: How are steel pipes used in the construction of sewer systems?
Steel pipes are commonly used in the construction of sewer systems due to their durability and strength. These pipes are used to transport sewage and wastewater from households and businesses to treatment plants or disposal sites. They are resistant to corrosion and can withstand high pressure, making them ideal for underground installations. Additionally, steel pipes can be manufactured in various sizes and lengths, allowing for efficient and cost-effective installation in sewer infrastructure.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords