• Carbon Electrode With Φ500~Φ700  S Grade System 1
  • Carbon Electrode With Φ500~Φ700  S Grade System 2
Carbon Electrode With Φ500~Φ700  S Grade

Carbon Electrode With Φ500~Φ700 S Grade

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
20 m.t.
Supply Capability:
800 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Carbon Electrode With Φ500~Φ700  S Grade


Product Description

Carbon Electrode is abaked electrode used in submerged arc furnaces for delivering power to the charge mix. Electrode  is added to the top of the electrode column cylindrical  form.  Electrode  is essentially a mix of Electrically Calcined Anthracite (ECA) or Calcined Petroleum Coke (CPC) with Coal Tar Pitch and is baked for weeks, it is widly used for ferroally productiong, silicon metal production etc. 

Features

1:carbon eletrode 
2:for ferroalloy,calcium carbide, silicon metal,  manufacture

Graphite/Carbon Electrode Paste Specification

PARAMETER   UNIT GUARANTEE VALUE
ItemsΦ500~Φ700Φ750~Φ960Φ1020~Φ1400
Rs      μΩ.m≤45≤38≤45≤38
≤40
Bulk Desity g/cm3≥1.55≥1.58≥1.55≥1.58≥1.55≥1.58
Bending Strength
MPa 
3.5~7.54.0~7.53.5~7.54.0~7.53.5~7.54.0~7.5
Compressive Strength       MPa≥20.0≥20.0≥20.0≥20.0≥19.0≥19.0
Compressive Strength       MPa3.2~4.83.0~4.63.2~4.83.0~4.63.2~4.83.0~4.6
Ash    %≤2.5≤2.0≤2.5≤2.0≤2.5≤2.0

Picture

Carbon Electrode With Φ500~Φ700  S Grade


We Also supply all kind of carbon electrode paste and below materials, please contact us if you have any enquiry about it.

Calcined Anthracite

Calcined Petroleum Coke

Coke (Met Coke, Foundry Coke, Semi Coke)




Q:How do humans contribute to carbon emissions?
Humans contribute to carbon emissions through various activities, such as burning fossil fuels for electricity, transportation, and heating; deforestation and land-use changes; industrial processes; and the production and disposal of waste. These actions release significant amounts of carbon dioxide and other greenhouse gases into the atmosphere, exacerbating the greenhouse effect and contributing to climate change.
Q:How does carbon impact the availability of clean transportation?
Carbon impacts the availability of clean transportation through its contribution to greenhouse gas emissions. Carbon dioxide (CO2) is a major greenhouse gas responsible for climate change, and the burning of fossil fuels in traditional transportation systems releases significant amounts of CO2 into the atmosphere. This has led to the urgent need for cleaner alternatives in the transportation sector. Clean transportation options, such as electric vehicles (EVs) and hydrogen fuel cell vehicles, are designed to minimize carbon emissions. By utilizing electricity or hydrogen as the primary source of energy, these vehicles produce zero tailpipe emissions, significantly reducing the carbon footprint associated with transportation. However, the availability and adoption of these clean transportation solutions are directly impacted by carbon-related factors. One key factor is the energy infrastructure required to support clean transportation. Electric vehicles, for example, rely on charging stations and a reliable power grid. The production of clean electricity from renewable sources, such as solar and wind, is crucial to ensure that EVs are truly emission-free. Therefore, the carbon intensity of the electricity grid plays a vital role in determining the environmental impact of electric transportation. Furthermore, the availability of carbon-neutral fuels is another important aspect. Hydrogen fuel cell vehicles, which convert hydrogen into electricity to power the vehicle, require a readily available and sustainable source of hydrogen. Currently, most hydrogen is produced from natural gas, which generates CO2 emissions during the production process. However, advancements in technologies like electrolysis, which uses renewable electricity to split water into hydrogen and oxygen, are paving the way for carbon-free hydrogen production. Additionally, carbon pricing and policies also impact the availability of clean transportation. By putting a price on carbon emissions, governments and organizations incentivize the adoption of low-carbon transportation options. This can lead to increased investment in clean transportation infrastructure, research, and development, ultimately driving the availability and affordability of clean transportation solutions. In conclusion, carbon emissions from traditional transportation systems have necessitated the development and availability of clean transportation alternatives. Factors such as the energy infrastructure, availability of carbon-neutral fuels, and supportive policies all influence the availability and accessibility of clean transportation. By addressing carbon impacts, we can accelerate the transition to a more sustainable and environmentally-friendly transportation system.
Q:How to distinguish carbon rods to identify carbon fishing rods?
I'm also waiting to learn! It seems all very busy, the masters are not on-line
Q:How does carbon impact food production?
Carbon impacts food production in several ways. Firstly, carbon dioxide (CO2) is a major greenhouse gas that contributes to climate change. Increased levels of CO2 in the atmosphere lead to higher temperatures, altered rainfall patterns, and more frequent extreme weather events, all of which can negatively affect crop growth and productivity. For example, excessive heat can reduce crop yields and quality, while intense rainfall or droughts can cause flooding or water scarcity, respectively, both of which can damage crops and reduce agricultural productivity. Furthermore, carbon emissions from agricultural practices, such as the use of synthetic fertilizers, deforestation for agriculture, and livestock production, contribute to the overall carbon footprint of the food system. These emissions exacerbate climate change, creating a vicious cycle where climate change negatively impacts food production, while food production contributes to climate change. Additionally, carbon emissions from the transportation and processing of food also impact its production. The transportation of food over long distances, often involving the use of fossil fuels, results in carbon emissions. Similarly, the processing and packaging of food require energy, often derived from fossil fuels, which further contributes to carbon emissions. To mitigate the carbon impact on food production, sustainable agricultural practices need to be adopted. This includes practices such as agroforestry, organic farming, and precision agriculture, which can help sequester carbon in soils, reduce the reliance on synthetic fertilizers, and improve overall soil health. Additionally, reducing food waste and promoting local and seasonal food consumption can reduce carbon emissions associated with transportation and processing. Overall, carbon impacts food production through its contribution to climate change and associated extreme weather events, as well as through emissions generated from agricultural practices and food processing. Addressing these impacts is crucial for ensuring food security and sustainability in the face of climate change.
Q:How much is a ton of carbon fiber? How much difference is made between domestic and imported?
Industrial grade carbon fiber, ranging in price from 160 thousand to 290 thousand.
Q:What are the properties of carbon-based rubber?
Carbon-based rubber, known also as carbon black-filled rubber, possesses a range of important properties that make it highly desirable for a variety of applications. To begin with, carbon-based rubber demonstrates excellent elasticity and flexibility, enabling it to endure repeated stretching and compression without permanent deformation. This particular quality renders it ideal for the manufacturing of products like tires, gaskets, and seals. Moreover, carbon-based rubber exhibits exceptional resistance to abrasion and wear, ensuring its longevity even in harsh conditions and with prolonged use. This attribute proves particularly advantageous in applications where the rubber material experiences friction or constant contact with rough surfaces. Additionally, carbon-based rubber showcases remarkable resistance to various environmental factors. It boasts excellent resistance to ozone, sunlight, and weathering, making it suitable for outdoor applications where exposure to UV radiation and extreme temperatures is expected. Its resistance to chemicals and oils further enhances its versatility, enabling its use in industries such as automotive, aerospace, and manufacturing. Another notable property of carbon-based rubber is its electrical conductivity. This characteristic renders it an ideal material for applications that necessitate static dissipation or protection against electrostatic discharge, such as in electronic devices, conveyor belts, and industrial flooring. Furthermore, carbon-based rubber displays good adhesion to various substrates, allowing it to form strong bonds when employed in adhesive applications or as a lining material. Overall, the exceptional elasticity, abrasion resistance, environmental resistance, electrical conductivity, and adhesion capabilities of carbon-based rubber contribute to its status as a highly sought-after material.
Q:How is carbon used in the production of nanotubes?
Carbon is used in the production of nanotubes by being arranged in a unique structure where carbon atoms are bonded together in a hexagonal lattice, forming a tube-like structure. This arrangement allows for the formation of nanotubes with exceptional mechanical, electrical, and thermal properties, making them ideal for various applications in fields such as electronics, materials science, and medicine.
Q:How are carbon nanomaterials used in electronics?
Carbon nanomaterials are widely used in electronics due to their unique properties and versatility. One of the most common applications of carbon nanomaterials in electronics is in the development of highly efficient and flexible conductive materials. Carbon nanotubes (CNTs) and graphene, both carbon nanomaterials, possess excellent electrical conductivity, making them ideal for creating conductive components in electronic devices. CNTs are cylindrical structures made of rolled-up graphene sheets. They can be used as interconnects in integrated circuits, improving their performance by reducing resistance and enhancing heat dissipation. Additionally, CNTs can be used in transistors, enabling faster and more efficient switching due to their high electron mobility. Their small size and flexibility make them suitable for creating transparent conductive films used in touchscreens and flexible electronics. Graphene, on the other hand, is a two-dimensional sheet of carbon atoms arranged in a hexagonal lattice. It is renowned for its exceptional electrical conductivity, high electron mobility, and excellent thermal conductivity. Graphene-based materials can be used as electrodes in batteries and supercapacitors, enhancing their energy storage capacity. Graphene transistors have the potential to replace traditional silicon-based transistors, allowing for faster and more energy-efficient electronic devices. Moreover, carbon nanomaterials, particularly CNTs, have shown promise in the field of nanoelectromechanical systems (NEMS). NEMS devices are incredibly small and sensitive, enabling applications such as sensors, actuators, and resonators. CNT-based NEMS devices have demonstrated exceptional sensitivity and responsiveness, making them suitable for various sensing applications, including pressure, gas, and biological sensing. In summary, carbon nanomaterials play a crucial role in electronics by providing highly conductive and versatile materials for various components and applications. Their unique properties, such as excellent electrical and thermal conductivity, make them ideal for creating faster, more efficient, and flexible electronic devices. As research and development in this field continue to progress, carbon nanomaterials are expected to revolutionize the electronics industry.
Q:What are the different colors of carbon-based gemstones?
The different colors of carbon-based gemstones include white, yellow, brown, black, and the rare blue and pink diamonds.
Q:How do fossil fuels release carbon dioxide when burned?
When fossil fuels are burned, they release carbon dioxide (CO2) as a byproduct. This process occurs due to the chemical composition of fossil fuels. Fossil fuels, such as coal, oil, and natural gas, are primarily made up of hydrocarbons, which are compounds consisting of carbon and hydrogen atoms. During combustion, these hydrocarbons react with oxygen (O2) in the air, resulting in the production of carbon dioxide and water vapor. The chemical equation for the combustion of a hydrocarbon fuel, such as octane found in gasoline, is as follows: C8H18 + 12.5O2 → 8CO2 + 9H2O In this reaction, each molecule of octane (C8H18) combines with 12.5 molecules of oxygen (O2) to produce 8 molecules of carbon dioxide (CO2) and 9 molecules of water (H2O). The carbon atoms present in the hydrocarbons of fossil fuels bond with oxygen to form carbon dioxide. This release of carbon dioxide into the atmosphere is what contributes to the greenhouse effect and global warming. The combustion of fossil fuels is a major source of anthropogenic (human-caused) carbon dioxide emissions, accounting for a significant portion of the greenhouse gases released into the atmosphere. It is important to note that burning fossil fuels also releases other pollutants, such as sulfur dioxide (SO2) and nitrogen oxides (NOx), which have detrimental effects on air quality and human health. To mitigate the negative impacts of fossil fuel combustion, efforts are being made to develop cleaner and more sustainable energy sources, such as renewable energy, to reduce our dependence on fossil fuels and decrease carbon dioxide emissions.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches