• Calcined Peroleum Coke with FC 98.5% S 0.7% System 1
  • Calcined Peroleum Coke with FC 98.5% S 0.7% System 2
Calcined Peroleum Coke with FC 98.5% S 0.7%

Calcined Peroleum Coke with FC 98.5% S 0.7%

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
20 m.t.
Supply Capability:
2000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Packaging & Delivery

25kgs/50kgs/1ton per bag or as buyer's request


Calcined Petroleum Coke is a critical ingredient in the production of Metallurgy and chemical industrial ,it can increase the used quantity of Scrap steel and reduce the quantity of Scrap iron, or use no Scrap iron at all, the calcined petroleum coke has follow properties: high absorptive character, no residue will be left and save production cost.


 User : Calcined Petroleum Coke comes from delayed coke which extracted from oil refinery. Although Calcined Petroleum Coke contains a little bit higher level of sulfur and nitrogen than pitch coke, the price advantage still makes it widely used during steel-making and founding as a kind of carbon additive/carburant.


General Specification of Calcined Anthracite:

FC %98.598.598.599
ASH %0.80.80.80.5
V.M. %0.70.70.70.5
S %0.50.55
0.70.5
MOISTURE %0.50.50.50.5

Standard Sizes (Granulometry):

0-4 mm, 0.5-3 mm, 0-25 mm, 1-4 mm, 2-8 mm We also supply as per customer's requirement.

Picture of CPC/ Calcined Petroleum Coke


Calcined Peroleum Coke with FC 98.5% S 0.7%

Calcined Peroleum Coke with FC 98.5% S 0.7%


Q: How does carbon affect the migration patterns of animals?
The migration patterns of animals are significantly influenced by carbon emissions and the subsequent increase in greenhouse gases. One of the main ways in which carbon affects migration is through climate change. As levels of carbon dioxide rise, the Earth's temperature also increases, leading to changes in weather patterns and the timing of seasons. These alterations can disrupt the natural cues and signals that animals depend on to initiate migration. For certain species, migration is triggered by changes in temperature, daylight hours, or the availability of food sources. However, with climate change, these cues may become inconsistent or modified, resulting in confusion and disruption in migration patterns. Migratory birds, for instance, rely on the presence of insects and other food sources during their journey. Nevertheless, fluctuations in temperatures and shifts in the life cycles of plants and insects can impact the timing and availability of these resources, potentially leading to food shortages and hindering their ability to successfully complete migrations. Furthermore, carbon emissions have caused changes in habitat and ecosystems that further influence migration patterns. Increasing temperatures and alterations in precipitation patterns can change the distribution and abundance of plant species. Consequently, this can affect the availability of food and shelter for migratory animals. Some species may find that their traditional breeding or feeding grounds are no longer suitable due to these changes, compelling them to modify their migration routes or patterns. In addition, carbon emissions also contribute to the melting of polar ice caps and the subsequent rise in sea levels. This directly affects marine species that rely on specific breeding grounds or feeding areas. As their habitats shrink or disappear, these animals may be compelled to migrate to new areas or face extinction. Overall, the rise in carbon emissions and resulting climate change have profound effects on the migration patterns of animals. Disruptions in weather patterns, modified cues for migration, changes in habitat, and shifts in food availability all contribute to the challenges faced by migratory species. Understanding and mitigating the impact of carbon on migration is essential to ensure the survival and well-being of these animals in a rapidly changing world.
Q: What are the basic structures of iron carbon alloys?
Pearlite: a mixture of ferrite and cementite, expressed in P. Microscopically, the cementite and the ferrite lamellae alternate with each other. Under equilibrium conditions, the carbon content of pearlite is 0.77%, and its strength is high. The plasticity, toughness and hardness of pearlite are between cementite and ferrite.A mixture of austenite and cementite at high temperatures, expressed in Le. Its mechanical properties are similar to those of cementite, with high hardness and poor plasticity.Ferrite, austenite and cementite are the basic phases of iron carbon alloy in the five kinds of structures.
Q: What are the consequences of increased carbon emissions on educational systems?
Increased carbon emissions can have several consequences on educational systems. Firstly, the health impacts of pollution caused by carbon emissions can lead to increased absenteeism among students and teachers, affecting the overall learning environment. Additionally, extreme weather events linked to climate change, such as hurricanes or heatwaves, can disrupt educational infrastructure, leading to school closures and disruptions in academic schedules. Moreover, the need to address climate change and its impacts may require educational institutions to allocate resources and curriculum time to climate-related topics, potentially diverting attention and resources from other subjects. Finally, the long-term consequences of climate change, such as rising sea levels or increased natural disasters, may force the relocation or rebuilding of educational facilities, causing significant disruptions to students' education.
Q: Are carbon cells the same as alkaline batteries?
The internal resistance of the battery is low, so the current produced is greater than that of the conventional carbon battery. Because the battery is free of mercury, it can be treated with domestic waste without being deliberately recycled.
Q: How is carbon used in the production of steel?
Carbon is added to iron ore during the steel production process to increase its strength and hardness. By combining with iron, carbon forms a solid solution, creating a material stronger than pure iron. The amount of carbon added determines the steel's properties, making it suitable for various applications such as construction, automotive, and machinery.
Q: What should be done to deal with leakage of carbon monoxide from the plant?
The hazardous and dangerous characteristics of carbon monoxide, carbon monoxide, is the Chinese name of CO. It is the product of incomplete combustion of materials. It is slightly soluble in water and soluble in various organic solvents such as ethanol and benzene. Mainly used in industrial chemical synthesis, such as synthetic methanol, phosgene, etc., or refined metal reducer. Occupation exposure to carbon monoxide in manufacturing steel and iron, coke, ammonia, methanol, graphite electrode, printing and dyeing factory, singeing, internal combustion engine powered coal mining blasting; non occupation contact is more extensive, such as household water heater was boiling water, winter coal, gas heating and so on, will produce carbon monoxide. Carbon monoxide is a flammable toxic gas known, but because of its physical and chemical properties of colorless smelly, so it is not easy to be aware of the harm, so it is not only the occupation killer, or the people's daily living potential. Carbon monoxide mixed with air can form an explosive mixture. When exposed to fire, high heat can cause combustion and explosion. Bottled carbon monoxide in case of high fever, increased pressure within the container, cracking and explosion. Because carbon monoxide has flammable properties, strong oxidizing agents and alkalis are its inhibitions. If the fire, should immediately cut off the gas source; if not immediately cut off the gas source, is not allowed to extinguish the burning gas.
Q: How does carbon affect the formation of desertification?
The formation of desertification is not directly affected by carbon. Rather, desertification is primarily caused by a combination of natural factors, such as climate change, prolonged drought, and human activities like deforestation and overgrazing. However, carbon does play an indirect role in exacerbating desertification through climate change. Carbon dioxide (CO2), a greenhouse gas, is released into the atmosphere through human activities, particularly the burning of fossil fuels. The increased concentration of CO2 in the atmosphere leads to global warming, which alters climate patterns and increases the frequency and intensity of droughts. Prolonged droughts deplete soil moisture, making the land more susceptible to erosion and degradation, thus contributing to the desertification process. Furthermore, carbon indirectly affects desertification through deforestation. Trees and other vegetation play a vital role in maintaining healthy soil by preventing erosion, retaining moisture, and providing shade. When forests are cleared, the carbon stored in trees is released into the atmosphere, contributing to higher CO2 levels. Additionally, the loss of vegetation cover exposes the soil to erosion by wind and water, which accelerates desertification. It is important to acknowledge that while carbon indirectly impacts desertification through climate change and deforestation, desertification itself is a complex process influenced by various factors. Addressing desertification requires a comprehensive approach involving sustainable land management practices, reforestation efforts, water management, and strategies to mitigate climate change.
Q: What is carbon sequestration?
The process of carbon sequestration involves capturing carbon dioxide (CO2) from the atmosphere and storing it for a long time, preventing its release and its contribution to climate change. The objective is to decrease the concentration of CO2 in the atmosphere, as this gas is a major cause of global warming. Carbon sequestration can happen naturally through biological processes like photosynthesis in plants and algae, or it can be done through various artificial methods. When plants, trees, and other vegetation absorb CO2 during photosynthesis and store it in their tissues, it is known as natural carbon sequestration. This is crucial in reducing CO2 levels in the atmosphere. Additionally, oceans also play a significant role in absorbing and storing large amounts of CO2, known as oceanic sequestration. Artificial carbon sequestration techniques involve capturing CO2 emissions from industrial processes, power plants, and other sources before they are released into the atmosphere. There are different methods for carbon capture, including capturing before combustion, after combustion, and through oxy-fuel combustion. Once the CO2 is captured, it can be transported and stored underground in geological formations like depleted oil and gas fields or saline aquifers. This process is commonly referred to as carbon capture and storage (CCS) or carbon capture utilization and storage (CCUS). Carbon sequestration has gained significant attention because of its potential to address climate change. By reducing the amount of CO2 in the atmosphere, it helps slow down global warming and mitigate the impacts of climate change. It is considered an essential part of the broader strategy to achieve net-zero emissions, as it not only reduces future emissions but also removes CO2 that has already been emitted. However, carbon sequestration is not a complete solution to climate change. It should be seen as a complementary approach to other mitigation efforts, such as transitioning to renewable energy sources and improving energy efficiency. Additionally, the long-term storage of CO2 requires careful monitoring and management to ensure its effectiveness and prevent any leakage or environmental risks. In conclusion, carbon sequestration is a crucial tool in the fight against climate change, offering the potential to reduce greenhouse gas emissions and contribute to a more sustainable future.
Q: How are carbon fibers used in manufacturing?
Due to their exceptional strength, low weight, and high stiffness, carbon fibers are widely employed in manufacturing. Typically, these fibers are combined with a matrix material, like epoxy resin, to produce composite materials with enhanced properties. The aerospace industry extensively utilizes carbon fibers in manufacturing. These fibers, when used in carbon fiber composites, are employed to fabricate lightweight and robust components for aircraft and spacecraft, including wings, fuselages, and propellers. The carbon fibers' high strength-to-weight ratio enables improved fuel efficiency and increased payload capacity. In the automotive industry, carbon fibers are incorporated into the production of high-performance vehicles. By integrating carbon fiber composites into car body construction, manufacturers can reduce weight, enhance fuel efficiency, and improve overall performance. Carbon fibers are also utilized in the manufacturing of various car components, such as steering wheels, brake systems, and suspension parts, to bolster their strength and durability. The sporting goods industry extensively employs carbon fiber composites. These composites are commonly used in the fabrication of bicycles, tennis rackets, golf clubs, and fishing rods, among other applications. The utilization of carbon fibers in these contexts results in lighter and more responsive equipment, leading to improved performance for athletes. Furthermore, the construction industry finds applications for carbon fibers. They are employed to reinforce concrete structures, such as bridges and buildings, to enhance their strength and durability. Additionally, carbon fiber-reinforced polymers (CFRPs) are utilized for the repair and retrofitting of existing structures, providing increased strength and extending their lifespan. In conclusion, carbon fibers are employed in manufacturing to create composite materials that are lightweight, strong, and durable. Their applications span various industries, including aerospace, automotive, sporting goods, and construction. The utilization of carbon fibers offers numerous benefits, including improved performance, fuel efficiency, and overall product quality.
Q: What is the carbon cycle?
The movement of carbon dioxide (CO2) between the atmosphere, land, bodies of water, and living organisms comprises the natural process known as the carbon cycle. It serves as a crucial component of Earth's ecosystem, playing a vital role in regulating the planet's climate. The carbon cycle commences with plants absorbing CO2 through photosynthesis. CO2 is taken in from the atmosphere and transformed into organic compounds, such as glucose, used for growth and energy. This process is referred to as carbon fixation. Animals and other consumers acquire carbon by consuming plants or other animals that have already incorporated carbon into their tissues. When plants and animals respire, they release CO2 back into the atmosphere, completing the initial stage of the cycle. Decomposers, including bacteria and fungi, contribute to another pathway in the carbon cycle by decomposing organic matter. During decomposition, carbon is released as CO2 or enters the soil as organic carbon. This stored carbon can later be released into the atmosphere through microbial respiration or erosion. The exchange of carbon between the atmosphere and bodies of water is also involved in the carbon cycle. When CO2 dissolves in water, it forms carbonic acid, leading to ocean acidification. Marine plants, such as algae and phytoplankton, play a critical role in the cycle by photosynthesizing and absorbing CO2 from the water. Geological processes, such as volcanic activity and weathering, additionally release carbon into the atmosphere. Over extended periods, carbon can be stored in the Earth's crust as fossil fuels like coal, oil, and natural gas. The burning of these fossil fuels for energy releases significant amounts of CO2, contributing to the greenhouse effect and climate change. The carbon cycle is an ongoing and intricate process that maintains a delicate balance of carbon in the Earth's atmosphere and ecosystems. However, human activities, particularly the burning of fossil fuels and deforestation, have profoundly disrupted this balance by releasing excessive amounts of CO2 into the atmosphere. This disruption has resulted in global warming and other environmental issues, underscoring the importance of comprehending and mitigating human impacts on this crucial natural process.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches