• Carbon C50 Steel Round Bars Low Carbon Bar System 1
  • Carbon C50 Steel Round Bars Low Carbon Bar System 2
  • Carbon C50 Steel Round Bars Low Carbon Bar System 3
Carbon C50 Steel Round Bars Low Carbon Bar

Carbon C50 Steel Round Bars Low Carbon Bar

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
50000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Carbon Steel
Shape:
Steel Round Bar

Carbon C50 Steel Round Bars Low Carbon Bar    

 

Product details:

Name:Carbon C50 Steel Round Bars Low Carbon Bar 

      Place of Origin:Liaoning,China    Brand Name:Dongbei Tegang   

      Shape:round bar                              Material: Alloy Structural Steel    

      Steel Grade: AISI 1050/JIS S50C/DIN C50/GB 50

      Size:Diameter:16mm~300mm

      Application:used in making high strengthened and wear resistant parts that works under high pressure, like axle, spring ring, axletree, cam, and steel sling etc.

 

Chemical Composition:

C

Si

Mn

Cr

Ni

Cu

P

S

0.47-0.53

0.17-0.37

0.50-0.80

≤0.25

≤0.30

≤0.35

≤0.035

≤0.035

 

Characteristics:

- High hardness, strength and toughness.

- Poor plasticity during cold deformation.

- Medium machinability. 

- Poor weldability.

- Poor hardenability. 

- Cracks is often caused during water quenching process.

- Large parts should be in normalizing treatment.

 

Application:

S50C structural carbon steel bar /1050 /50/C50 can be used to be manufactured roller, shaft, tyre, spring ring, damping spring, clutch and steel wire rope, etc.

 

Product Show:

Carbon C50 Steel Round Bars Low Carbon Bar

Carbon C50 Steel Round Bars Low Carbon Bar

Carbon C50 Steel Round Bars Low Carbon Bar

 

Q: How does special steel contribute to reducing product costs while maintaining quality?
Special steel contributes to reducing product costs while maintaining quality through several ways. Firstly, special steel possesses enhanced strength and durability, allowing manufacturers to produce products with thinner gauges or smaller dimensions, reducing material usage and overall costs. Additionally, its superior corrosion resistance and longevity ensure that the products have a longer lifespan, reducing the need for frequent replacements. Moreover, special steel's exceptional machinability enables efficient production processes, reducing labor costs and increasing productivity. Lastly, its high precision and consistency in manufacturing contribute to minimizing defects and waste, resulting in cost savings and improved product quality. Overall, special steel's unique properties and characteristics enable manufacturers to optimize production, thereby reducing costs without compromising on product quality.
Q: What are the different surface modification techniques used for special steel?
There are several surface modification techniques used for special steel to enhance its properties and improve its performance in specific applications. Some of the common techniques include: 1. Nitriding: Nitriding is a surface hardening process that involves the diffusion of nitrogen into the steel surface. It forms a hard layer of nitrides, which significantly increases the surface hardness, wear resistance, and fatigue strength of the steel. 2. Carbonitriding: Carbonitriding is a similar process to nitriding, but it involves the diffusion of both carbon and nitrogen into the steel surface. This technique increases the surface hardness and also improves the wear resistance and fatigue strength of the steel. 3. Case hardening: Case hardening involves the addition of a hard, wear-resistant layer to the surface of the steel. This can be achieved through processes like carburizing or carbonitriding, where carbon is introduced into the surface layer, transforming it into a high-carbon martensitic layer. 4. Shot peening: Shot peening is a technique that involves bombarding the steel surface with small, high-velocity shots of media, such as steel, ceramic, or glass beads. This process induces compressive stresses on the surface, improving its fatigue strength and resistance to stress corrosion cracking. 5. Electroplating: Electroplating is a common technique used to apply a thin layer of metal coating onto the steel surface. This can be done with various metals like zinc, nickel, or chromium, providing protection against corrosion, improving aesthetics, and enhancing wear resistance. 6. Physical vapor deposition (PVD): PVD is a coating technique that involves depositing thin layers of material onto the steel surface through a vacuum process. This technique can be used to apply coatings like titanium nitride (TiN), which provides excellent wear resistance and reduces friction. 7. Laser surface modification: Laser surface modification techniques, such as laser hardening or laser alloying, use a high-energy laser beam to selectively heat and modify the steel surface. This process can improve hardness, wear resistance, and corrosion resistance. These surface modification techniques can be tailored to meet specific requirements, enhancing the properties of special steel for various applications in industries such as automotive, aerospace, and tooling.
Q: What are the different types of case-hardening steel?
There are several different types of case-hardening steel, including carburizing steel, nitriding steel, and cyaniding steel.
Q: How does special steel contribute to the transportation sector?
The transportation sector relies heavily on special steel due to the numerous benefits it offers. Special steel plays a pivotal role in improving the efficiency, safety, and overall performance of vehicles. One primary advantage is its high strength-to-weight ratio, which allows manufacturers to reduce vehicle weight without compromising structural integrity. As a result, fuel efficiency improves, emissions decrease, and operating costs are lowered. Furthermore, special steel exhibits exceptional resistance to corrosion, making it especially advantageous in areas with severe weather conditions or exposure to saltwater, such as coastal regions or winter roadways where salt is used for ice melting. This corrosion resistance helps extend the lifespan of transportation infrastructure, such as bridges, tunnels, and railways, thus minimizing maintenance and replacement expenses. Another important aspect is the outstanding impact resistance of special steel. It can withstand heavy impacts and collisions, making it ideal for constructing vehicle frames, body panels, and safety components. This enhances passenger safety and reduces the likelihood of severe injuries during accidents. Special steel also plays a crucial role in producing high-performance engines and powertrains. Steel alloys with specific characteristics, such as high temperature and wear resistance, are utilized in manufacturing critical engine components like pistons, crankshafts, and camshafts. This ensures long-lasting and efficient engine performance, resulting in improved reliability and reduced downtime. Moreover, special steel contributes to advancements in electric and hybrid vehicles. Certain steel alloys possess unique properties that enable the development of lightweight battery packs, electric motor components, and charging infrastructure. These advancements facilitate the shift towards greener transportation options and help decrease the environmental impact of the sector. Overall, special steel has a profound influence on the transportation sector by providing lightweight, durable, corrosion-resistant, and impact-resistant materials. It not only enhances the performance and safety of vehicles but also contributes to the establishment of sustainable and efficient transportation systems.
Q: Can special steel be recycled?
Indeed, special steel, also referred to as alloy steel, can indeed be recycled. This variant of steel is enriched with additional elements like chromium, nickel, or molybdenum to enhance its properties. These supplementary elements do not impede the steel's recyclability. The recycling process for special steel is akin to that of regular steel. Sources like scrap metal yards, demolition sites, or end-of-life products serve as collection points for the steel. Subsequently, it undergoes processing to eliminate impurities, is sorted, and finally shredded into smaller fragments. These shreds are then melted in a furnace, resulting in molten steel that can be cast into new products or employed as raw material for manufacturing processes. Recycling special steel boasts various advantages. Firstly, it aids in conserving natural resources by diminishing the need for fresh steel production. Secondly, it curtails energy consumption and the emission of greenhouse gases typically associated with steel manufacturing. Furthermore, recycling steel reduces waste generation and fosters a circular economy by utilizing existing materials. Ultimately, special steel, much like any other steel variety, can be efficiently recycled, thus making a meaningful contribution to environmental sustainability and resource conservation.
Q: How does special steel contribute to the manufacturing of cutting tools?
Special steel is a key component in the manufacturing of cutting tools due to its exceptional properties such as high hardness, toughness, and wear resistance. These characteristics enable cutting tools to withstand the rigors of various cutting operations, ensuring longer tool life and improved cutting performance. Furthermore, special steel can be customized to meet specific requirements, making it an ideal choice for manufacturing cutting tools that are used in a wide range of industries, including automotive, aerospace, and manufacturing.
Q: What are the applications of special steel in the oil and gas supply chain?
Special steel has various applications in the oil and gas supply chain. It is commonly used in the construction of pipelines, drilling equipment, and offshore platforms. Special steel's high strength, corrosion resistance, and ability to withstand extreme temperatures make it ideal for these applications. Additionally, special steel is used in the manufacturing of valves, fittings, and other components that are crucial for the efficient and safe operation of the oil and gas supply chain.
Q: How does special steel contribute to product innovation?
Special steel contributes to product innovation in several ways. Firstly, special steel offers enhanced mechanical properties such as high strength, hardness, and wear resistance. This allows designers and engineers to create innovative products that can withstand higher stresses, operate in extreme conditions, and have improved longevity. For example, special steel is commonly used in the aerospace industry to manufacture lightweight yet strong components that increase fuel efficiency and improve overall aircraft performance. Additionally, special steel can be tailored to have specific characteristics such as corrosion resistance, heat resistance, or magnetic properties. This enables the development of innovative products that can operate in challenging environments, such as marine structures, power plants, or electronic devices. For instance, special stainless steel alloys are extensively used in the medical field to produce implants and surgical instruments that are biocompatible, durable, and resistant to harsh sterilization processes. Furthermore, special steel can be manufactured with precise dimensions and tolerances, allowing for intricate and complex designs. This promotes product innovation by enabling the creation of intricate components, such as gears, bearings, or turbine blades, that require high precision and reliability. These advanced designs can improve the efficiency, performance, and overall functionality of various products, ranging from automotive engines to wind turbines. Moreover, the versatility of special steel enables it to be combined with other materials, such as polymers or composites, to create hybrid products with unique properties. This opens up possibilities for innovation in various industries, including automotive, construction, and consumer electronics. For example, special steel-reinforced concrete structures can be more robust and durable, while special steel-reinforced polymers can improve the strength and impact resistance of lightweight components. In conclusion, special steel contributes to product innovation by providing enhanced mechanical properties, tailored characteristics, precise dimensions, and the ability to be combined with other materials. These capabilities empower designers and engineers to create innovative products that have improved performance, durability, and functionality, leading to advancements in various industries.
Q: How does special steel contribute to the strength of structures?
Special steel contributes to the strength of structures through its unique properties and composition. It is specifically engineered to have higher tensile strength, durability, and resistance to corrosion compared to regular steel. Its increased strength allows structures to withstand heavier loads, vibrations, and extreme weather conditions more effectively, ensuring their stability and longevity. Additionally, the use of special steel enables the construction of lighter and more streamlined structures, as thinner sections can be used without compromising their strength. Overall, special steel plays a vital role in enhancing the structural integrity and safety of various buildings, bridges, and infrastructure projects.
Q: Can special steel be used in the agricultural sector?
Yes, special steel can be used in the agricultural sector. Special steel refers to steel alloys that have been specifically designed and engineered to possess certain unique and superior qualities. These qualities can include increased strength, corrosion resistance, wear resistance, and heat resistance, among others. In the agricultural sector, there are several applications where special steel can be highly beneficial. One such application is in the manufacturing of agricultural machinery and equipment. Special steel can be used to produce components such as blades, cutting edges, plowshares, and tillage tools that need to withstand heavy loads, abrasion, and harsh environmental conditions. The high strength and wear resistance of special steel can significantly extend the lifespan of these components, reducing maintenance and replacement costs for farmers. Additionally, special steel can be used in the construction of storage facilities and infrastructure in the agricultural sector. Structures such as grain silos, barns, and livestock shelters often require materials that can resist corrosion from moisture, chemicals, and animal waste. Special steel alloys with enhanced corrosion resistance properties can provide a durable and long-lasting solution, allowing farmers to store their crops and livestock in a safe and secure environment. Furthermore, special steel can be utilized in the fabrication of irrigation systems and pipelines. These systems require materials that can withstand exposure to water, soil, and fertilizers without degradation or corrosion. Special steel grades with excellent corrosion resistance, such as stainless steel, can be utilized to ensure the longevity and efficiency of irrigation systems, reducing water wastage and increasing agricultural productivity. In conclusion, special steel can indeed be used in the agricultural sector due to its superior qualities such as strength, corrosion resistance, wear resistance, and heat resistance. Its applications range from manufacturing agricultural machinery and equipment to constructing storage facilities and irrigation systems. By utilizing special steel, farmers can benefit from increased durability, reduced maintenance costs, and improved efficiency, ultimately contributing to the growth and sustainability of the agricultural sector.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords