Calcined Petroleum Coke Specification of CNBM in China
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1 m.t.
- Supply Capability:
- 10000000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
1.Structure of Calcined Petroleum Coke Description
Calcined Petroleum Coke is made from raw petroleum coke,which is calcined in furnace at a high temperature(1200-1300℃).CPC/Calcined Petroleum Coke is widely used in steelmaking,castings manufacture and other metallurgical industry as a kind of recarburizer because of its high fixed carbon content,low sulfur content and high absorb rate.Besides,it is also a best kind of raw materials for producing artifical graphite(GPC/Graphitized Petroleum Coke) under the graphitizing temperature(2800℃).
2.Main Features of the Calcined Petroleum Coke
High-purity graphitized petroleum coke is made from high quality petroleum coke under a temperature of 2,500-3,500°C. As a high-purity carbon material, it has characteristics of high fixed carbon content, low sulfur, low ash, low porosity etc.It can be used as carbon raiser (Recarburizer) to produce high quality steel,cast iron and alloy.It can also be used in plastic and rubber as an additive.
3. Calcined Petroleum Coke Images
4. Calcined Petroleum Coke Specification
Physical Properties:
Element | Percentage |
Real Density | 2.06 g/cc |
Apparent Density | 1.40 g/cc |
Hard grove grindability index | 33-43 |
Standard Sizes (Granulometry):
0-4 mm, 0.5-3 mm, 0-25 mm, 1-4 mm, 2-8 mm We also supply as per customer's requirement.
Chemical Properties :
Fixed Carbon | Sulphur Content | Moisture | V.Matter | Ash |
98% | 0.6%max | 5%max | 0.7max | 0.5%max |
98.5min | 0.5%max | 5%max | 0.5max | 0.5%max |
5.FAQ of Calcined Petroleum Coke
1). Q: Are you a factory or trading company?
A: We are a factory.
2). Q: Where is your factory located? How can I visit there?
A: Our factory is located in ShanXi, HeNan, China. You are warmly welcomed to visit us!
3). Q: How can I get some samples?
A: Please connect me for samples
4). Q: Can the price be cheaper?
A: Of course, you will be offered a good discount for big amount.
- Q: What are the impacts of carbon emissions on the stability of mountains?
- Carbon emissions can have various impacts on the stability of mountains. One significant effect is the acceleration of glacial melting, leading to increased water runoff and the potential for more frequent and severe landslides. Additionally, carbon dioxide contributes to the acidification of rainwater, which can corrode rocks and weaken the stability of mountain slopes. Climate change, driven by carbon emissions, also leads to alterations in precipitation patterns, temperature, and weather events, increasing the risk of erosion, rockfalls, and avalanches. Overall, carbon emissions have a detrimental influence on the stability of mountains, posing risks to both human populations and ecosystems.
- Q: How does carbon affect the formation of droughts?
- Carbon does not directly affect the formation of droughts. However, increased carbon dioxide levels resulting from human activities contribute to climate change, which can lead to changes in precipitation patterns and increased likelihood of drought conditions in certain regions.
- Q: What are the impacts of carbon emissions on the stability of polar ice caps?
- Carbon emissions have significant impacts on the stability of polar ice caps. The primary cause of these emissions is the burning of fossil fuels, which releases large amounts of carbon dioxide into the atmosphere. As a greenhouse gas, carbon dioxide traps heat and contributes to global warming and climate change. This, in turn, leads to the melting of polar ice caps. The ice caps in the polar regions are highly sensitive to changes in temperature. As the Earth's temperature rises due to increased carbon emissions, the polar ice caps experience accelerated melting. This causes a rise in sea levels, which has consequences for coastal regions worldwide. Rising sea levels can lead to increased flooding, erosion, and the loss of valuable coastal ecosystems. Moreover, the stability of polar ice caps is crucial for maintaining the Earth's climate balance. The ice caps reflect sunlight back into space, acting as a natural cooling mechanism for the planet. As they melt, less sunlight is reflected, and more is absorbed by the Earth's surface, exacerbating the warming effect. This creates a feedback loop, where the melting of ice caps leads to further warming, causing even more ice to melt. The impacts of carbon emissions on polar ice caps are not limited to rising sea levels and climate change. The loss of ice also affects the delicate balance of ecosystems in these regions. Polar ice caps provide habitat and a food source for a diverse range of organisms, including polar bears, seals, and various species of birds. The melting of ice disrupts these ecosystems, leading to declines in wildlife populations and potential extinctions. Moreover, the melting of polar ice caps also affects global ocean currents and weather patterns. The cold, dense water that forms from melting ice sinks to the bottom of the ocean and drives important oceanic circulation patterns. Changes in these patterns can have far-reaching consequences, including altering the distribution of marine species, impacting fisheries, and influencing regional climates. To mitigate the impacts of carbon emissions on polar ice caps, it is crucial to reduce greenhouse gas emissions and transition to cleaner and renewable energy sources. International efforts, such as the Paris Agreement, aim to limit global warming and reduce carbon emissions to prevent further ice cap melting. Additionally, supporting research and monitoring programs in polar regions can help us better understand these complex systems and develop effective strategies for their conservation.
- Q: How does carbon impact the pH balance of oceans?
- Ocean acidification is caused by the absorption of carbon dioxide (CO2) released into the atmosphere by the oceans. This absorption leads to an increase in the acidity of the water, as the CO2 reacts with seawater to form carbonic acid. The carbonic acid then releases hydrogen ions, which further contribute to the acidity of the water. The increased acidity of the oceans has harmful consequences for marine life and ecosystems. Many marine organisms, including coral reefs, shellfish, and phytoplankton, rely on calcium carbonate to create their shells and skeletons. However, in more acidic waters, the availability of calcium carbonate decreases, making it difficult for these organisms to maintain their structures. This can result in weakened shells, stunted growth, and even death. Ocean acidification also affects the reproductive and physiological processes of marine organisms. For instance, it can interfere with the development of fish larvae and disrupt the ability of certain species to detect predators or locate food. Moreover, the increased acidity can harm the organisms that rely on these species for sustenance, thus causing a ripple effect throughout the food chain. Additionally, ocean acidification can have a profound impact on the overall health and functioning of marine ecosystems. Coral reefs, often referred to as the "rainforests of the sea," serve as habitats for a wide range of marine species. However, as the acidity of the oceans rises, coral reefs become more susceptible to bleaching and ultimately dying off. This loss of coral reefs would result in catastrophic consequences for the biodiversity and productivity of marine ecosystems. To summarize, the rise in atmospheric carbon dioxide levels leads to the absorption of CO2 by the oceans, resulting in ocean acidification. This process disturbs the pH balance of the oceans, making them more acidic. The increased acidity has detrimental effects on marine life, including the ability of organisms to build their structures, reproduce, and function within their ecosystems. It is imperative to address the issue of carbon emissions in order to mitigate the negative impacts of carbon on the pH balance of oceans and safeguard the health and integrity of marine ecosystems.
- Q: How does carbon impact the prevalence of landslides?
- The prevalence of landslides is significantly influenced by carbon dioxide (CO2) in the form of carbon. One of the main ways carbon affects landslides is by contributing to climate change. The increase in CO2 levels in the atmosphere causes global warming, which changes weather patterns, precipitation levels, and the overall stability of slopes and landforms. Carbon emissions leading to climate change result in more frequent and intense rainfall events in many areas. This heightened rainfall saturates the soil and raises groundwater levels, making slopes more prone to landslides. Additionally, intense rainfall erodes the soil, further compromising slope stability and increasing the chances of landslides. Another impact of carbon on landslide prevalence is its influence on vegetation. Carbon dioxide is crucial for photosynthesis, the process plants use to convert sunlight into energy. However, elevated CO2 levels can negatively affect plant growth and productivity. Plants play a vital role in stabilizing slopes and preventing erosion through their extensive root systems. When carbon levels are high, plants may experience stunted growth, weakening their ability to anchor the soil and protect against landslides. Furthermore, carbon emissions contribute to the melting of glaciers and permafrost, which can trigger landslides in mountainous regions. Glaciers serve as natural stabilizers, holding large amounts of rock and soil in place. When glaciers melt due to global warming, the sudden release of this material can trigger landslides with devastating consequences. In conclusion, carbon primarily impacts the prevalence of landslides through its contribution to climate change and subsequent effects on weather patterns, vegetation growth, and slope stability. It is crucial to address carbon emissions and mitigate climate change to reduce the occurrence and severity of landslides.
- Q: How is carbon used in the production of textiles?
- Carbon is used in the production of textiles in several ways. One of the most common uses of carbon in textiles is in the form of carbon fibers. These fibers are lightweight, strong, and have high tensile strength. They are used to reinforce various types of fabrics, adding durability and enhancing their performance. Carbon is also used in the production of activated carbon, which is a highly porous material. Activated carbon is commonly used in textile production for its ability to adsorb and remove unwanted odors and chemicals. It is used in the manufacturing of fabrics for sportswear, workwear, and other specialized textiles where odor control is important. Furthermore, carbon black, a fine powder made of carbon particles, is used as a pigment in textile printing and dyeing. It provides deep black color to fabrics and is commonly used in the production of garments, upholstery, and other textiles where a dark color is desired. Another innovative use of carbon in textiles is through the development of carbon nanotextiles. These textiles are made from carbon nanotubes, which are cylindrical structures composed of carbon atoms. Carbon nanotextiles have unique properties such as high electrical conductivity and thermal stability, making them ideal for applications like wearable electronics, smart textiles, and conductive fabrics. In summary, carbon is widely used in the production of textiles through the incorporation of carbon fibers, activated carbon, carbon black, and carbon nanotubes. These applications contribute to the strength, durability, odor control, coloration, and functionality of various types of textiles.
- Q: How does carbon affect the formation of toxic algal blooms?
- Toxic algal blooms can be influenced by carbon in both direct and indirect ways. Eutrophication is one direct effect, where carbon, in the form of organic matter, enters water bodies from various human activities. This excess carbon acts as a nutrient for algae, promoting their rapid growth and leading to algal blooms. Another direct effect is the impact of carbon on the composition of algal communities. Certain algae species, known as harmful algal blooms (HABs), can produce toxins that are harmful to aquatic organisms, humans, and animals. The concentration of carbon can influence the growth and dominance of HABs, creating favorable conditions for their development. Furthermore, carbon affects the chemistry of the water, including its pH levels. Changes in pH can significantly affect the physiology and behavior of algae. Some toxic algae species are more tolerant of low pH levels, which can be worsened by increased carbon dioxide levels in the water. This creates an environment that favors the growth of harmful algal blooms. Indirectly, carbon can also impact the temperature and nutrient dynamics in water bodies. Climate change, driven by increased carbon emissions, can result in warmer temperatures, which stimulate algal growth. Additionally, changes in nutrient availability due to carbon-induced alterations in the water cycle can favor the development of toxic algal blooms. In conclusion, carbon plays a significant role in the formation of toxic algal blooms through eutrophication, changes in algal community composition, alterations in water chemistry, and indirect impacts on temperature and nutrient dynamics. Understanding these relationships is crucial for developing strategies to mitigate the occurrence and impact of harmful algal blooms.
- Q: What are the different methods of measuring carbon dioxide levels in the atmosphere?
- There are several methods used to measure carbon dioxide levels in the atmosphere. These methods include direct measurement, remote sensing, and ice core analysis. Direct measurement is the most accurate and widely used method. It involves taking air samples from various locations around the world and analyzing them using gas analyzers. These analyzers can measure the concentration of carbon dioxide in the air, usually expressed in parts per million (ppm). Remote sensing is another method used to measure carbon dioxide levels. It involves using satellite-based instruments to observe and measure the amount of carbon dioxide in the Earth's atmosphere. These instruments can detect the absorption and scattering of sunlight by carbon dioxide molecules, providing valuable data on its concentration. Ice core analysis is a historical method of measuring carbon dioxide levels. Scientists drill deep into ice sheets in polar regions and extract ice cores. These ice cores contain trapped air bubbles from hundreds or thousands of years ago. By analyzing the carbon dioxide content in these bubbles, scientists can reconstruct past atmospheric carbon dioxide levels and compare them to present-day levels. Each of these methods has its advantages and limitations. Direct measurement provides real-time data and precise measurements, but it requires a vast network of monitoring stations worldwide. Remote sensing offers a global perspective and can cover large areas, but it may have limitations in resolving fine-scale spatial variations. Ice core analysis provides valuable long-term historical data, but it is limited to specific regions and can only provide indirect measurements. Combining these methods allows scientists to gain a comprehensive understanding of carbon dioxide levels in the atmosphere, helping us monitor and assess the impact of human activities on climate change.
- Q: How can carbon capture and storage help reduce greenhouse gas emissions?
- CCS has the potential to make a significant contribution in the fight against greenhouse gas emissions. Its core process involves capturing carbon dioxide emitted from industrial activities or power generation, transporting it, and then underground storage in geological formations. To begin with, CCS can effectively reduce greenhouse gas emissions by capturing CO2 directly from major sources like power plants and industrial facilities. Without CCS, these sources would release CO2 into the atmosphere, exacerbating the greenhouse effect and further contributing to climate change. By capturing and storing this CO2, the negative impact on climate change is mitigated. Additionally, CCS allows for the continued use of fossil fuels, such as coal or natural gas, in a more environmentally friendly manner. These fuels are currently the main sources of energy for electricity generation and industrial processes. By implementing CCS, the emissions of CO2 from these fossil fuel activities can be significantly reduced, facilitating a gradual and economically feasible transition to cleaner energy sources. Moreover, the combination of CCS with bioenergy production creates a process known as BECCS. This involves using biomass, like crop residues or energy crops, to produce energy. The CO2 emitted during this bioenergy production is captured and stored, resulting in a net-negative emissions process. BECCS effectively removes CO2 from the atmosphere, offsetting emissions from other sectors. Lastly, CCS can play a crucial role in the decarbonization of hard-to-abate sectors, such as cement and steel production, where low-carbon alternatives are currently limited. By capturing and storing CO2 emissions from these sectors, CCS significantly reduces their overall greenhouse gas emissions and supports their transition towards more sustainable practices. In conclusion, the implementation of carbon capture and storage technology is essential in reducing greenhouse gas emissions. It directly captures and stores CO2 from major sources, allows for the sustainable use of fossil fuels, enables negative emissions through BECCS, and aids the decarbonization of challenging sectors. By incorporating CCS alongside other mitigation strategies, global climate goals can be achieved, and the battle against climate change can be fought effectively.
- Q: What are the impacts of carbon emissions on the stability of islands?
- The impacts of carbon emissions on the stability of islands are significant and wide-ranging. Carbon emissions contribute to climate change, which in turn leads to sea level rise, increased storm intensity, and ocean acidification – all of which pose great threats to the stability of islands. Sea level rise is one of the most immediate and visible impacts of carbon emissions on islands. As global temperatures rise, glaciers and ice caps melt, and ocean waters expand, causing sea levels to gradually increase. This rise in sea level puts low-lying islands at risk of inundation, erosion, and even disappearing completely. Many small islands, particularly in the Pacific and Indian Oceans, are already experiencing the effects of rising sea levels, leading to loss of land, displacement of populations, and destruction of infrastructure. Another impact of carbon emissions on islands is the increased intensity and frequency of storms. Warmer ocean temperatures fuel the formation of tropical storms and hurricanes, which can cause devastating damage to island communities. These storms can result in widespread destruction of homes, infrastructure, and ecosystems, leading to long-term economic and social disruptions. Islands are particularly vulnerable to storm surges, which occur when high winds push seawater onto land, causing extensive flooding and erosion. Ocean acidification, caused by the absorption of excess carbon dioxide by the ocean, is another significant impact of carbon emissions on islands. Increased levels of carbon dioxide in the atmosphere lead to increased absorption by the ocean, resulting in a decrease in pH levels and making the ocean more acidic. This acidification poses a threat to coral reefs, which are vital for island ecosystems and serve as natural barriers against wave action and storm surge. Coral reefs provide habitats for a wide array of marine life and are important for tourism and local economies. The loss or degradation of coral reefs due to ocean acidification affects not only the biodiversity but also the resilience of islands to climate-related impacts. Overall, the impacts of carbon emissions on the stability of islands are profound and severe. Rising sea levels, increased storm intensity, and ocean acidification all pose significant threats to the physical and social stability of island communities. Urgent action is needed to mitigate carbon emissions, invest in adaptation measures, and support island nations in building resilience to these impacts.
Send your message to us
Calcined Petroleum Coke Specification of CNBM in China
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1 m.t.
- Supply Capability:
- 10000000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords