Calcined Petroleum Coke Specification of CNBM in China
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1 m.t.
- Supply Capability:
- 10000000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
1.Structure of Calcined Petroleum Coke Description
Calcined Petroleum Coke is made from raw petroleum coke,which is calcined in furnace at a high temperature(1200-1300℃).CPC/Calcined Petroleum Coke is widely used in steelmaking,castings manufacture and other metallurgical industry as a kind of recarburizer because of its high fixed carbon content,low sulfur content and high absorb rate.Besides,it is also a best kind of raw materials for producing artifical graphite(GPC/Graphitized Petroleum Coke) under the graphitizing temperature(2800℃).
2.Main Features of the Calcined Petroleum Coke
High-purity graphitized petroleum coke is made from high quality petroleum coke under a temperature of 2,500-3,500°C. As a high-purity carbon material, it has characteristics of high fixed carbon content, low sulfur, low ash, low porosity etc.It can be used as carbon raiser (Recarburizer) to produce high quality steel,cast iron and alloy.It can also be used in plastic and rubber as an additive.
3. Calcined Petroleum Coke Images
4. Calcined Petroleum Coke Specification
Physical Properties:
Element | Percentage |
Real Density | 2.06 g/cc |
Apparent Density | 1.40 g/cc |
Hard grove grindability index | 33-43 |
Standard Sizes (Granulometry):
0-4 mm, 0.5-3 mm, 0-25 mm, 1-4 mm, 2-8 mm We also supply as per customer's requirement.
Chemical Properties :
Fixed Carbon | Sulphur Content | Moisture | V.Matter | Ash |
98% | 0.6%max | 5%max | 0.7max | 0.5%max |
98.5min | 0.5%max | 5%max | 0.5max | 0.5%max |
5.FAQ of Calcined Petroleum Coke
1). Q: Are you a factory or trading company?
A: We are a factory.
2). Q: Where is your factory located? How can I visit there?
A: Our factory is located in ShanXi, HeNan, China. You are warmly welcomed to visit us!
3). Q: How can I get some samples?
A: Please connect me for samples
4). Q: Can the price be cheaper?
A: Of course, you will be offered a good discount for big amount.
- Q: Well, recently, the carbon cycle has suddenly come up with a lot of questions. What's the definition of carbon and light carbon? What are the characteristics, and what are the differences between the two?
- The organic matter is composed of recombinant LFOM was completely decomposed residue or, to re synthesis of aromatic substances as the main organic matter (mainly humus), its stable structure is complex, in fact this part of organic matter in soil clay is a combination between, or in the process of the formation of soil aggregates Among the internal organic matter enclosed in aggregates, plays a very important role in maintaining the structure of aggregates, it is difficult to be utilized by microorganisms, soil carbon pool is stable. The content of 2 components of features from a certain extent that the carbon sensitive to climatic and environmental changes of the reaction.
- Q: How does carbon dioxide affect fuel efficiency?
- Carbon dioxide does not directly affect fuel efficiency, but it is a byproduct of the combustion of fossil fuels, which are commonly used as fuel in vehicles. When fossil fuels are burned, carbon dioxide is released into the atmosphere, contributing to the greenhouse effect and climate change. However, the increased concentration of carbon dioxide in the atmosphere does not have a direct impact on the fuel efficiency of a vehicle. Fuel efficiency is primarily determined by the design and technology of the vehicle, including factors such as engine efficiency, weight, aerodynamics, and driving conditions. Nevertheless, reducing carbon dioxide emissions is crucial for mitigating climate change and promoting a sustainable future.
- Q: Where are carbon fiber sheets and carbon fiber sheets used?
- Carbon fiber is an inorganic material with good rigidity and heat resistance. Carbon fiber resin composite is a kind of plastic. It is easy to process and belongs to excellent plastics in plastics.Compared with steel, carbon fiber has the greatest advantages of low density, high strength, corrosion resistance and so on. But there are also shortcomings, the biggest drawback is poor processability. It's usually a molding (hand, roll, winding, molding and pultrusion).Carbon fiber is a brittle material, but it has high strength and is usually not used alone. But as a fiber reinforcement, it can be added to the resin matrix to improve the properties of the resin and become a high-performance composite.
- Q: How does carbon cycle through the environment?
- Carbon moves between the atmosphere, land, oceans, and living organisms in a continuous cycle known as the carbon cycle. This cycle is essential for maintaining a stable climate and supporting life on Earth. To begin, carbon dioxide (CO2) in the atmosphere is absorbed by plants during photosynthesis. Plants convert CO2 into organic carbon compounds, such as sugars and carbohydrates, which they use for growth and energy. Animals then consume these plants or other animals, passing the carbon along the food chain. When plants and animals die or excrete waste, their organic matter decomposes, releasing carbon back into the environment. Microorganisms, like bacteria and fungi, break down the organic matter and release carbon dioxide as a byproduct. Some carbon can be stored in the soil for long periods, depending on factors like temperature and moisture. This stored carbon in the soil may be released back into the atmosphere through processes like microbial respiration or erosion. Fossil fuel burning, including coal, oil, and natural gas, is another way carbon returns to the atmosphere. When these fuels are burned for energy, they release carbon dioxide, contributing to the greenhouse effect and climate change. The oceans also play a vital role in the carbon cycle. They absorb a significant amount of carbon dioxide from the atmosphere through carbon sequestration. Marine plants, like phytoplankton, also photosynthesize and store carbon in their tissues. When these organisms die, they sink to the ocean floor, where the carbon can be stored as sediment or dissolved in the water for long periods. Oceanic circulation and biological processes redistribute carbon throughout the oceans, with surface water exchanging carbon with the atmosphere. Furthermore, the oceans act as a carbon sink, storing large amounts of carbon dioxide and helping to regulate its levels in the atmosphere. In conclusion, the carbon cycle is a complex and interconnected process involving various natural and human activities. Understanding and managing this cycle is crucial for mitigating climate change and maintaining a healthy environment.
- Q: How does carbon affect the quality of drinking water?
- Carbon can affect the quality of drinking water through two main mechanisms: activated carbon filtration and carbon dioxide (CO2) absorption. Activated carbon filtration is commonly used in water treatment processes to remove organic contaminants, chemicals, and odors, improving the taste and odor of drinking water. On the other hand, excessive dissolved carbon dioxide in water can make it acidic and affect the pH level, potentially making it corrosive and altering the taste. However, carbon itself is not harmful to human health and can be beneficial in certain forms, such as in the form of activated carbon filters.
- Q: How do carbon emissions contribute to extreme weather events?
- Extreme weather events are influenced by carbon emissions, which contribute to climate change. When greenhouse gases like carbon dioxide are released into the atmosphere, they trap heat from the sun and cause the Earth's average temperature to rise. Human activities such as burning fossil fuels, deforestation, and industrial processes are major drivers of this phenomenon known as global warming. As the planet warms, weather patterns become disrupted, leading to an increase in extreme weather events. Carbon emissions play a role in this process in several ways: 1. Heatwaves: Higher carbon emissions result in increased temperatures, leading to more frequent and intense heatwaves. These prolonged periods of extreme heat pose risks to human health, agriculture, and ecosystems. 2. Hurricanes and tropical storms: Carbon emissions cause ocean temperatures to rise, providing more energy to fuel hurricanes and tropical storms. This leads to stronger storms with higher wind speeds and heavier rainfall, causing more destruction and flooding. 3. Droughts: Climate change caused by carbon emissions can disrupt precipitation patterns, resulting in decreased rainfall and increased droughts in certain regions. These prolonged periods of water scarcity have severe impacts on agriculture, water supplies, and ecosystems. 4. Heavy rainfall and flooding: Global warming intensifies the water cycle, leading to more evaporation and moisture in the atmosphere. This results in heavier rainfall events, increasing the risk of flooding and flash floods. 5. Wildfires: Climate change, driven by rising temperatures and drier conditions, creates favorable conditions for wildfires. Carbon emissions contribute to longer and more severe fire seasons, leading to more extensive and destructive wildfires. It's important to note that while carbon emissions contribute to extreme weather events, they are not the sole cause. Natural climate variability factors like El Niño and La Niña can also influence extreme weather. However, reducing carbon emissions and transitioning to cleaner energy sources can help mitigate the impacts of climate change and prevent further exacerbation of extreme weather events.
- Q: How does carbon impact the prevalence of ocean acidification?
- Carbon dioxide (CO2) is a greenhouse gas that contributes to climate change. When excess CO2 is released into the atmosphere through human activities such as burning fossil fuels, a significant portion of it gets absorbed by the oceans. This absorption of CO2 leads to a chemical reaction that increases the concentration of hydrogen ions in the water, resulting in a decrease in pH levels. This process is known as ocean acidification. Carbon dioxide dissolved in seawater creates carbonic acid, which then dissociates into hydrogen ions and bicarbonate ions. The increasing concentration of hydrogen ions decreases the availability of carbonate ions, which are crucial for shell-forming organisms such as corals, mollusks, and some planktonic species. These organisms rely on carbonate ions to build and maintain their shells or skeletons. As ocean acidification progresses, the saturation state of calcium carbonate, a key mineral in shell production, decreases. This makes it more difficult for marine organisms to build their shells, leading to reduced growth rates and weakened structures. Some organisms, such as corals and oysters, may even experience dissolution of their shells under extreme acidification conditions. The impact of ocean acidification extends beyond shell-building organisms. It affects the entire marine ecosystem as it disrupts the delicate balance of various species and their interactions. For example, the reduced availability of carbonate ions can impact the growth and survival of phytoplankton, which form the base of the marine food web. This, in turn, can affect the entire food chain, leading to cascading effects on fish populations and other marine organisms. Furthermore, ocean acidification can also impact the physiological functions of marine organisms, including their reproduction, behavior, and immune systems. Some studies suggest that acidification may impair the ability of certain fish species to detect predators or navigate, making them more vulnerable to predation and reducing their chances of survival. In conclusion, carbon emissions from human activities contribute to the prevalence of ocean acidification. The increased concentration of CO2 in the atmosphere leads to its absorption by the oceans, which subsequently lowers pH levels and reduces the availability of carbonate ions. This process has profound implications for shell-building organisms, the marine food web, and the overall health and biodiversity of our oceans. Addressing carbon emissions and mitigating climate change is essential to reduce the impacts of ocean acidification and preserve the health of marine ecosystems.
- Q: How does carbon dioxide affect textile production?
- Carbon dioxide affects textile production in several ways. Firstly, the production of synthetic fibers such as polyester and nylon, which are widely used in the textile industry, involves the emission of carbon dioxide during the manufacturing process. This contributes to greenhouse gas emissions and climate change. Additionally, carbon dioxide is released during the combustion of fossil fuels used for energy in textile factories. This not only adds to the environmental impact but also affects air quality and human health. Moreover, the dyeing and finishing processes in textile production often require the use of chemicals that emit carbon dioxide when they break down or react with other substances. These emissions further contribute to the carbon footprint of the industry. Overall, carbon dioxide has a significant impact on textile production, primarily through the emissions generated during fiber manufacturing, energy consumption, and chemical usage. Therefore, efforts to reduce carbon dioxide emissions and transition to more sustainable practices are crucial for mitigating the environmental impact of the textile industry.
- Q: What are the alternatives to fossil fuels for energy production?
- Different options exist for energy production beyond fossil fuels, each with its own unique advantages and challenges. These options encompass: 1. Renewable Energy Sources: Renewable energy sources tap into constantly replenished natural resources such as solar, wind, hydroelectric, and geothermal energy. Solar energy converts sunlight into electricity using photovoltaic cells, while wind energy harnesses the power of wind to generate electricity. Hydroelectric energy is generated through the force of flowing water, typically from dams or rivers, and geothermal energy utilizes the Earth's core heat. These sources offer clean and nearly unlimited energy, reduce greenhouse gas emissions, and promote energy independence. However, they necessitate a substantial initial investment and are subject to limitations based on geographical location and weather conditions. 2. Nuclear Energy: Nuclear power plants produce electricity through nuclear fission, which involves splitting atoms of uranium or plutonium to release energy. Nuclear energy is highly efficient and emits no greenhouse gases during operation. It has the potential to provide consistent baseload power and significantly reduce reliance on fossil fuels. Nevertheless, concerns arise regarding the storage and disposal of nuclear waste, the risk of accidents, and the potential for nuclear weapons proliferation. 3. Bioenergy: Bioenergy utilizes organic materials like agricultural waste, wood pellets, or dedicated energy crops to generate heat, electricity, or biofuels. Biomass can be burned directly or converted into gaseous or liquid forms, such as biogas or bioethanol, to replace fossil fuels. Bioenergy is advantageous as a readily available and carbon-neutral energy source. However, it may compete with food production, necessitate significant land use, and raise concerns about deforestation and biodiversity loss if not sustainably managed. 4. Tidal and Wave Energy: Tidal and wave energy technologies harness the power of ocean currents and waves to generate electricity. These sources offer predictability and the potential for a consistent and reliable energy supply. However, the technology is still in its early stages, and challenges such as high upfront costs, environmental impacts, and limited geographic availability need to be addressed. 5. Hydrogen Fuel Cells: Hydrogen can be used as a fuel source in fuel cells to produce electricity. Hydrogen fuel cells combine hydrogen with oxygen from the air, generating electricity and water vapor as byproducts. Hydrogen is abundant and can be produced from various sources, including renewable energy. However, challenges include the high costs associated with production, storage, and distribution infrastructure, as well as the need for advancements in hydrogen storage technology. It is essential to recognize that a combination of these alternative energy sources, coupled with improvements in energy efficiency and conservation, is likely to create a more sustainable and resilient energy future. This approach will reduce our dependence on fossil fuels and mitigate the impacts of climate change.
- Q: How does carbon impact the availability of renewable energy sources?
- Carbon impacts the availability of renewable energy sources in a number of ways. Firstly, carbon emissions from the burning of fossil fuels contribute to climate change, which is a significant threat to the availability and sustainability of renewable energy sources. The increased frequency and intensity of extreme weather events caused by climate change can damage renewable energy infrastructure, such as wind turbines and solar panels. Secondly, carbon-intensive industries, such as coal mining and oil extraction, can limit the growth and development of renewable energy technologies. These industries have historically received substantial subsidies and support from governments, which can hinder the progress of renewable energy by diverting resources and investment away from cleaner alternatives. Furthermore, carbon emissions contribute to air pollution, which can have negative impacts on the efficiency and performance of renewable energy systems. For example, air pollution can reduce the amount of sunlight reaching solar panels or obstruct wind flow to turbines, thereby decreasing their energy output. Additionally, the reliance on carbon-based energy sources creates a significant market competition for renewable energy. Fossil fuels often have lower costs due to their established infrastructure and economies of scale, making it challenging for renewable energy sources to compete on a cost basis. This can limit the availability and accessibility of renewable energy options, particularly in developing countries where fossil fuels are often the cheaper and more readily available option. To address these challenges, it is crucial to reduce carbon emissions through transitioning to renewable energy sources and implementing policies that incentivize their adoption. By reducing carbon emissions, we can mitigate the impacts of climate change on renewable energy infrastructure and create a more conducive environment for the development and deployment of clean energy technologies.
Send your message to us
Calcined Petroleum Coke Specification of CNBM in China
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1 m.t.
- Supply Capability:
- 10000000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords