• Calcined Anthracite FC 94% Low Price CNBM Product System 1
  • Calcined Anthracite FC 94% Low Price CNBM Product System 2
Calcined Anthracite FC 94% Low Price CNBM Product

Calcined Anthracite FC 94% Low Price CNBM Product

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
0 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Packaging & Delivery

Packaging Detail:25kgs/50kgs/1ton per bag or as buyer's request
Delivery Detail:Within 20 days after receiving corect L/C

Specifications

Calcined Anthracite
Fixed carbon: 90%-95%
S: 0.5% max
Size: 0-3. 3-5.3-15 or as request

Our Products:

Feature: All of our goods are made in the best quality of world famous Tianjin. All of our products are with High carbon, Low ash, low sulphur, Low Moisture.

Application:

The Calcined Anthracite Coal/Gas Calcined Anthracite Coal/Carbon Raiser is mainly used in steelmaking in electrical stove, screening water, shipbuilding sandblast to remove rust. It can reduce the cost of steelmaking effectively by replacing the traditional petroleum coke of carburant.Also can improve the Carbon content in steel-melting and Ductile iron foundry.


General Specification of Calcined Anthracite:


PARAMETER   UNIT GUARANTEE VALUE

F.C.%

95MIN

94MIN

93MIN

92MIN

90MIN

ASH %

4MAX

5MAX

6MAX

7MAX

8MAX

V.M.%

1 MAX

1MAX

1.5MAX

1.5MAX

1.5MAX

SULFUR %

0.5MAX

0.5MAX

0.5MAX

0.5MAX

0.5MAX

MOISTURE %

0.5MAX

0.5MAX

0.5MAX

0.5MAX

0.5MAX


Size can be adjusted based on buyer's request.

Pictures of Calcined Anthracite:

FC 90%-95% Calcined Anthracite

Calcined Anthracite FC 94% Low Price CNBM Product


Q:What are the impacts of carbon emissions on the stability of rainforests?
Carbon emissions have significant impacts on the stability of rainforests. Increased levels of carbon dioxide in the atmosphere due to emissions contribute to global warming, leading to changes in rainfall patterns and increased temperatures. These changes can negatively affect the delicate balance of rainforest ecosystems, causing droughts, wildfires, and loss of biodiversity. Additionally, carbon emissions contribute to the acidification of oceans, which can harm marine life that rainforests depend on, such as coral reefs. Overall, carbon emissions pose a serious threat to the stability and long-term survival of rainforests.
Q:How is carbon used in the water treatment process?
Carbon is used in the water treatment process as a highly effective adsorbent to remove organic compounds, chemicals, and impurities from water. It acts as a filter by trapping contaminants on its surface, improving the taste and odor of water and making it safe for consumption.
Q:What are the effects of carbon emissions on the stability of estuaries?
Carbon emissions have significant effects on the stability of estuaries. Increased carbon dioxide in the atmosphere leads to ocean acidification, which negatively impacts the delicate balance of estuarine ecosystems. Acidic waters can harm the growth and survival of estuarine plants and animals, disrupt the food web, and reduce biodiversity. Additionally, carbon emissions contribute to global warming, leading to rising sea levels and increased storm intensity, which can cause erosion and flooding in estuaries. Overall, carbon emissions pose a threat to the stability and health of estuaries, with potentially far-reaching ecological consequences.
Q:What are the different types of carbon-based concrete additives?
Concrete can be enhanced and improved by incorporating various types of carbon-based additives. These additives, derived primarily from carbon-based materials, can be categorized into three main types: carbon nanotubes, graphene, and carbon fibers. 1. Carbon Nanotubes: These cylindrical structures consist of carbon atoms arranged in a distinct hexagonal pattern. They possess exceptional mechanical and electrical properties, making them highly sought-after as concrete additives. By adding carbon nanotubes to concrete, its strength, durability, and toughness can be improved. Additionally, these nanotubes enhance the electrical conductivity of concrete, which proves advantageous for applications such as self-healing concrete and anti-static flooring. 2. Graphene: Graphene is a two-dimensional lattice composed of a single layer of carbon atoms. It is renowned for its remarkable strength, high electrical conductivity, and excellent barrier properties. When incorporated into concrete, graphene significantly enhances its mechanical properties, including compressive strength, flexural strength, and resistance to abrasion. It also improves the durability and impermeability of concrete, providing resistance against water and chemical penetration. 3. Carbon Fibers: Carbon fibers are elongated and slender strands derived from organic polymers like polyacrylonitrile or pitch. They possess exceptional tensile strength and are commonly used as reinforcements in various construction materials, including concrete. The addition of carbon fibers to concrete enhances its flexural strength, resistance to impacts, and behavior when subjected to cracks. Furthermore, carbon fibers improve the ductility and toughness of concrete, making it more resistant to dynamic loads. It is important to note that each type of carbon-based concrete additive offers unique advantages and applications. Carbon nanotubes provide exceptional mechanical and electrical properties, graphene enhances strength and barrier properties, while carbon fibers strengthen flexural strength and impact resistance. The choice of additive depends on the specific requirements of the concrete application and the desired performance characteristics.
Q:What are the different types of carbon-based drugs?
Carbon-based drugs can be classified into several categories based on their chemical structure and mode of action. One of the most common types is the class of drugs known as alkaloids. Alkaloids are naturally occurring compounds found in various plants and have potent pharmacological effects. Examples of carbon-based alkaloid drugs include morphine, codeine, and cocaine. Another category of carbon-based drugs is steroids. Steroids are a class of compounds characterized by a carbon skeleton consisting of four fused rings. They are widely used in medicine due to their anti-inflammatory and immunosuppressive properties. Examples of carbon-based steroid drugs include cortisone, prednisone, and estrogen. Furthermore, carbon-based drugs can also be classified as nonsteroidal anti-inflammatory drugs (NSAIDs). These drugs work by inhibiting the action of cyclooxygenase enzymes, thereby reducing pain, inflammation, and fever. Common carbon-based NSAIDs include aspirin, ibuprofen, and naproxen. Additionally, carbon-based drugs can be categorized as antibiotics. Antibiotics are compounds derived from microorganisms or synthesized artificially that inhibit the growth of bacteria or other microorganisms. Examples of carbon-based antibiotic drugs include penicillin, tetracycline, and erythromycin. Lastly, carbon-based drugs can also be synthetic compounds designed to target specific receptors or pathways in the body. These drugs are often developed through extensive research and testing to treat various diseases and conditions. Examples include cholesterol-lowering statins, antipsychotic medications, and anti-cancer drugs. In summary, the different types of carbon-based drugs include alkaloids, steroids, NSAIDs, antibiotics, and synthetic compounds. Each category encompasses drugs with diverse chemical structures and mechanisms of action, allowing for a wide range of therapeutic applications in medicine.
Q:How is carbon used in the production of diamonds?
Carbon is used in the production of diamonds through a process called high-pressure high-temperature (HPHT) synthesis. In this method, pure carbon is subjected to extremely high pressures and temperatures, replicating the conditions found deep within the Earth's mantle where natural diamonds form. By applying these conditions, carbon atoms rearrange and bond together, resulting in the formation of synthetic diamonds.
Q:What are the carbon nanotube applications?
The application of carbon nanotubes in composite materials: carbon nanotubes with nanoparticles in size effect, but also has high mechanical strength, good flexibility, high conductivity, unique properties, become the ideal reinforcement of polymer composites, is widely used in chemical industry, machinery, electronics, aviation, aerospace and other fields. But because of carbon nanotubes are easily assembled into bundles or wound, and compared with other nanoparticles, the surface is relatively inert, in common organic solvents or polymer materials dispersion in the low, which greatly restricts its application. Therefore, the surface of carbon nanotubes modified carbon nanotubes has become a research hotspot the polymer / composite material. At present, the domestic and foreign research on the surface modification of carbon nanotubes is mainly covalent and non covalent bond groups introduced on the surface, such as the use of the surface Chemical modification, surfactant modification, or by coating modification methods of carbon nanotube polymer molecules. In recent years is presented. The ultraviolet irradiation, plasma radiation modification and processing method. The surface modification of carbon nanotubes for polymer composites can significantly improve the mechanical properties, electrical properties and thermal properties.
Q:What is carbon nanocomposite coating?
Carbon nanocomposite coatings, composed of carbon nanotubes or other carbon-based nanoparticles dispersed within a matrix material like polymer or metal, serve as a protective coating for diverse surfaces. The primary goal of these coatings is to enhance the mechanical, thermal, and electrical properties of the material being coated. By incorporating carbon nanoparticles, the coating gains strength, hardness, and wear resistance, resulting in increased durability. Furthermore, it exhibits exceptional resistance to corrosion, making it suitable for use in severe environments. A key advantage of carbon nanocomposite coatings lies in their ability to offer multifunctional properties. For instance, they can be engineered to possess high electrical conductivity, making them ideal for electronics and electrochemical devices. Additionally, they can exhibit high thermal conductivity, making them valuable for dissipating heat in electronic devices or as a thermal barrier coating. Moreover, carbon nanocomposite coatings have demonstrated promising outcomes in various sectors such as aerospace, automotive, energy, and healthcare. In aerospace, they enhance the performance and longevity of aircraft components. In the automotive industry, they provide anti-scratch and self-cleaning capabilities. In energy applications, they improve solar panel efficiency and protect oil and gas pipelines from corrosion. In healthcare, they enable drug delivery, act as antibacterial coatings, and facilitate bio-sensing applications. In summary, carbon nanocomposite coatings offer a wide array of advantages, including enhanced mechanical and electrical properties, corrosion resistance, and multifunctionality. With continuous research and development, these coatings hold immense potential for different industries, providing innovative solutions to address their unique requirements and challenges.
Q:when to use hard carbon, and when to use soft carbon. Neutral charcoal can play what role? Thank you.
The soft carbon strokes are more black and easier to use. The hard charcoal painted gray, the color is not deep, when painting and sketch paper friction is relatively large, there is a general feeling of rustling, veteran can feel it.Soft charcoal most used in a black or a black screen most places, such as shadow, Terminator...
Q:How does carbon impact the productivity of marine ecosystems?
Carbon impacts the productivity of marine ecosystems in several ways. One of the main ways is through ocean acidification. When carbon dioxide from human activities is released into the atmosphere, a significant portion of it gets absorbed by the oceans. This excess carbon dioxide reacts with seawater to form carbonic acid, leading to a decrease in the pH of the ocean. This increase in acidity has detrimental effects on many marine organisms, especially those that rely on calcium carbonate to build their shells or skeletons, such as corals, shellfish, and some plankton species. Ocean acidification inhibits the process of calcification, making it difficult for these organisms to develop and maintain their protective structures. This not only affects their survival but also impacts the entire food chain. Many species rely on these calcium carbonate structures as a food source or for shelter, so a decline in their productivity can have cascading effects on the ecosystem. Additionally, increased carbon dioxide levels in the ocean can also affect the metabolism and physiology of marine organisms. Some studies have found that elevated CO2 concentrations can impair the growth, development, and reproductive success of certain species. This can lead to a decrease in overall productivity within the ecosystem. Furthermore, climate change, driven by the accumulation of carbon dioxide in the atmosphere, also impacts marine ecosystems. Rising temperatures can disrupt the delicate balance of marine ecosystems, affecting the distribution and abundance of species, altering predator-prey relationships, and leading to changes in the timing of vital ecological events such as spawning or migration. These changes can have profound impacts on the productivity of marine ecosystems, as different species may struggle to adapt or compete under new conditions. In conclusion, carbon dioxide emissions have far-reaching consequences for marine ecosystems. Ocean acidification and climate change, driven by excessive carbon dioxide, have detrimental effects on the productivity of marine ecosystems, affecting the growth, survival, and reproductive success of marine organisms. The impacts of carbon on marine ecosystems highlight the urgent need to reduce greenhouse gas emissions and mitigate the effects of climate change to protect these fragile and vital ecosystems.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches