ASTM GR60 deformed steel bar for construction
- Loading Port:
- Tianjin
- Payment Terms:
- TT or LC
- Min Order Qty:
- 25 m.t.
- Supply Capability:
- 100000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Product Description:
OKorder is offering ASTM GR60 deformed steel bar for construction at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.
Product Applications:
ASTM GR60 deformed steel bar are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.
Product Advantages:
OKorder's deformed steel bar are durable, strong, and resist corrosion.
Main Product Features:
· Premium quality
· Prompt delivery & seaworthy packing (30 days after receiving deposit)
· Corrosion resistance
· Can be recycled and reused
· Mill test certification
· Professional Service
· Competitive pricing
Product Specifications:
Minimum Order Quantity: | Unit: | m.t. | Loading Port: | ||
Supply Ability: | Payment Terms: | Package: | wire rod packing |
Product Description:
Product Description:
Chemical Composition: (Please kindly find our chemistry of our material based on HRB500 as below for your information)
Grade | Technical data of the original chemical composition (%) | ||||||
C | Mn | Si | S | P | V | ||
HRB400 | ≤0.25 | ≤1.60 | ≤0.80 | ≤0.045 | ≤0.045 | 0.04-0.12 | |
Physical capability | |||||||
Yield Strength (N/cm²) | Tensile Strength (N/cm²) | Elongation (%) | |||||
≥400 | ≥570 | ≥14 |
Theoretical weight and section area of each diameter as below for your information:
Diameter(mm) | Section area (mm²) | Mass(kg/m) | Weight of 12m bar(kg) |
6 | 28.27 | 0.222 | 2.664 |
8 | 50.27 | 0.395 | 4.74 |
10 | 78.54 | 0.617 | 7.404 |
12 | 113.1 | 0.888 | 10.656 |
14 | 153.9 | 1.21 | 14.52 |
16 | 201.1 | 1.58 | 18.96 |
18 | 254.5 | 2.00 | 24 |
20 | 314.2 | 2.47 | 29.64 |
22 | 380.1 | 2.98 | 35.76 |
25 | 490.9 | 3.85 | 46.2 |
28 | 615.8 | 4.83 | 57.96 |
32 | 804.2 | 6.31 | 75.72 |
36 | 1018 | 7.99 | 98.88 |
40 | 1257 | 9.87 | 118.44 |
50 | 1964 | 15.42 | 185.04 |
Usage and Applications of HRB400 Deformed Steel Bar:
Deformed bar is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger..
Packaging & Delivery of HRB400 Deformed Steel Bar:
Packaging Detail: products are packed in bundle and then shipped by container or bulk vessel, deformed bar is usually naked strapping delivery, when storing, please pay attention to moisture proof. The performance of rust will produce adverse effect.
Each bundle weight: 2-3MT, or as required
Payment term: TT or L/C
Delivery Detail: within 45 days after received advanced payment or LC.
Label: to be specified by customer, generally, each bundle has 1-2 labels
Trade terms: FOB, CFR, CIF
FAQ:
Q1: Why buy Materials & Equipment from OKorder.com?
A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.
Q4: What makes stainless steel stainless?
A4: Stainless steel must contain at least 10.5 % chromium. It is this element that reacts with the oxygen in the air to form a complex chrome-oxide surface layer that is invisible but strong enough to prevent further oxygen from "staining" (rusting) the surface. Higher levels of chromium and the addition of other alloying elements such as nickel and molybdenum enhance this surface layer and improve the corrosion resistance of the stainless material.
- Q: Can steel rebars be used in underwater construction?
- Yes, steel rebars can be used in underwater construction. They are commonly used to reinforce concrete structures in underwater environments such as bridges, piers, and offshore platforms. The steel rebars are designed to be corrosion-resistant, ensuring their durability and strength even when submerged in water for extended periods.
- Q: What is the impact of steel rebars on the sustainability of a structure?
- Steel rebars have a significant impact on the sustainability of a structure. They enhance the structural integrity and durability of buildings, improving their longevity and reducing the need for frequent repairs or replacements. The use of steel rebars also allows for the construction of taller and more complex structures, optimizing space utilization and reducing the environmental footprint. Additionally, steel rebars can be recycled, promoting resource efficiency and reducing the demand for new steel production, thereby contributing to the overall sustainability of the structure and the construction industry as a whole.
- Q: Why is the difference between left and right threads? What's the difference?
- Generally, the right-hand thread is in accordance with people's habits, just as the pointer of a clock is right. Compared with the less threaded but is indispensable, it has certain effect, more commonly used threaded on the rotating shaft with a more general rotation shaft are turning to the right, as some pump, motor, fan in the shaft as a tightening wheel for all kinds of leaves threaded, when the impeller rotation relative to the tightening nut, it has a different rotation inertia force, if it is the right-hand thread words will lead to a tightening mother increasingly loose causing impeller loose damaged equipment. This force in the switch machine or a great change in speed when the performance is particularly prominent, so the choice of left-handed thread more and more tight.
- Q: How do steel rebars affect the maintenance requirements of a structure?
- The maintenance requirements of a structure are significantly influenced by steel rebars, also known as reinforcing bars. These bars, which are constructed from steel, are embedded in concrete to provide strength and durability to the structure. Enhancing the overall structural integrity of a building or infrastructure is one of the primary ways in which steel rebars impact maintenance. The presence of rebars greatly increases the load-bearing capacity of concrete, enabling it to withstand external forces such as wind, earthquakes, and heavy loads. This reinforcement helps to prevent cracks, deformations, and structural failures, ultimately reducing the maintenance needs of a structure. Moreover, steel rebars also contribute to the longevity of a structure. By offering tensile strength to concrete, they shield it from the negative effects of shrinkage and expansion caused by temperature fluctuations. These rebars act as a framework that holds the concrete together, minimizing the risk of cracks and ensuring the structural stability of the building over time. As a result, the maintenance requirements are reduced as the structure remains intact and resilient against environmental factors. Nevertheless, it is important to acknowledge that steel rebars can also impact maintenance requirements in specific situations. If the rebars are not designed, installed, or protected properly, they can be vulnerable to corrosion. Corrosion occurs when moisture and oxygen penetrate the concrete and reach the steel, causing it to rust. Rusting rebars can lead to the expansion of steel, creating internal pressure that can result in cracking and spalling of the concrete. Consequently, regular inspections, maintenance, and protection measures such as epoxy coating or cathodic protection systems are necessary to prevent corrosion and ensure the longevity of the structure. In conclusion, steel rebars have a positive impact on the maintenance requirements of a structure by enhancing its strength, durability, and longevity. They decrease the need for repairs and maintenance caused by structural failures and increase the overall resilience against external forces. However, proper design, installation, and protection of rebars are crucial to avoid corrosion-related issues that could increase maintenance needs.
- Q: How do steel rebars contribute to the overall seismic resistance of a structure?
- Steel rebars play a crucial role in enhancing the overall seismic resistance of a structure. During an earthquake, a structure undergoes significant lateral forces and vibrations. These forces can cause the structure to deform or even collapse if not properly addressed. Steel rebars, also known as reinforcement bars, are used to reinforce concrete structures and provide added strength and stability. One of the primary contributions of steel rebars is their ability to absorb and distribute seismic energy. When an earthquake occurs, the rebars act as a backbone within the concrete, absorbing the seismic forces and preventing the structure from experiencing excessive deformation. The rebars help to distribute the energy throughout the structure, reducing localized stress and preventing concentrated damage. Furthermore, steel rebars improve the ductility of a structure. Ductility refers to the ability of a material to deform without fracturing. During an earthquake, the ground shakes, causing the structure to sway. Steel rebars enhance the ductility of concrete by providing an additional pathway for the energy to dissipate. This allows the structure to absorb and dissipate the seismic energy by deforming in a controlled manner, ensuring that it remains intact and minimizes damage. Moreover, steel rebars increase the tensile strength of concrete. Concrete is strong in compression but weak in tension. The inclusion of steel rebars counteracts this weakness by providing tensile strength to the structure. When an earthquake occurs, the rebars bear the tensile forces and prevent the concrete from cracking or collapsing under tension. This reinforcement ensures that the structure remains stable and resilient during seismic events. In summary, steel rebars contribute significantly to the overall seismic resistance of a structure by absorbing and distributing seismic energy, enhancing ductility, and increasing the tensile strength of concrete. Their inclusion in the construction process ensures that the structure can withstand the lateral forces and vibrations caused by earthquakes, reducing the risk of damage or collapse.
- Q: What are the guidelines for the proper anchoring of steel rebars in walls?
- The guidelines for proper anchoring of steel rebars in walls typically involve factors such as the rebar size, spacing, embedment depth, and the type of wall construction. It is important to follow building codes and structural engineering standards specific to your region. Generally, rebars should be adequately spaced and securely anchored into the surrounding concrete or masonry to ensure proper load transfer and structural integrity. Additionally, proper cover thickness should be maintained to protect rebars from corrosion and ensure long-term durability.
- Q: Can steel rebars be used in structures with limited construction regulations?
- Structures with limited construction regulations may incorporate steel rebars, but it is crucial to acknowledge that the building's safety and structural integrity may be compromised in the absence of suitable regulations. Reinforcing concrete structures with steel rebars is a common practice to provide strength and stability. Nevertheless, relying solely on rebars does not guarantee the structure's safety. Construction regulations are in place to ensure that buildings are designed and constructed to withstand diverse forces and loads, such as wind, earthquakes, and live loads. These regulations encompass fire safety, electrical systems, and accessibility as well. Without adhering to these regulations, there is an elevated risk of structural failure or other safety concerns. Incorporating steel rebars into structures without appropriate construction regulations may result in inadequately designed or constructed buildings that cannot withstand these forces and loads. This can lead to structural failure, collapse, or other hazards. Therefore, it is advisable to comply with local construction codes and regulations to ensure the safety and longevity of any structure.
- Q: What are the different grades of steel rebars?
- The different grades of steel rebars typically include Grade 40, Grade 60, and Grade 75.
- Q: What are the different types of steel rebars used in tunnel constructions?
- Tunnel constructions rely on the use of different steel rebars to strengthen and fortify the tunnels. These rebars play a vital role in providing stability and reinforcement to the tunnel structures. Below are several types of steel rebars commonly utilized in tunnel constructions: 1. Mild Steel Rebars: Also known as black or carbon steel rebars, mild steel rebars are the most frequently employed in tunnel constructions. They are both cost-effective and possess sufficient strength to meet the structural demands of tunnels. 2. High-Strength Steel Rebars: High-strength steel rebars, sometimes referred to as tension steel, offer enhanced tensile strength, making them ideal for tunnels that require high load-bearing capabilities. These rebars are typically fabricated from alloys such as ASTM A615 Grade 80 or ASTM A706 Grade 80. 3. Stainless Steel Rebars: Stainless steel rebars are resistant to corrosion and provide excellent durability in harsh tunnel environments. They are commonly used in tunnel constructions where corrosion protection is vital, such as in marine or coastal areas. 4. Epoxy-Coated Rebars: Epoxy-coated rebars are regular mild steel rebars that have been coated with epoxy to safeguard against corrosion. They are often employed in tunnel constructions that are exposed to moisture, chemicals, or other corrosive elements. 5. Galvanized Rebars: Galvanized rebars are coated with a layer of zinc to shield them from corrosion. They are commonly used in tunnel constructions that are exposed to moisture or in regions with high humidity levels. 6. Fiberglass Rebars: Fiberglass rebars, also known as GFRP (Glass Fiber Reinforced Polymer) rebars, are lightweight and resistant to corrosion. They are used in tunnel constructions where reducing weight is crucial or in areas with high electromagnetic interference. 7. Carbon Fiber Rebars: Carbon fiber rebars, also called CFRP (Carbon Fiber Reinforced Polymer) rebars, possess high tensile strength and are resistant to corrosion. They are often utilized in tunnel constructions that require high tensile strength and resistance to chemical or environmental degradation. Choosing the appropriate type of steel rebar for tunnel constructions depends on various factors such as load-bearing requirements, exposure to corrosion, environmental conditions, and project budget. It is advisable to consult with structural engineers or construction experts to ensure the optimal selection of steel rebars for tunnel projects.
- Q: How are steel rebars protected against damage from construction equipment?
- Steel rebars are typically protected against damage from construction equipment through the use of rebar caps or plastic sleeves. These protective measures are designed to cover the exposed ends of the rebars, preventing any direct impact or damage from heavy machinery. Additionally, construction workers are trained to handle equipment carefully around rebars to minimize the risk of accidental damage.
Send your message to us
ASTM GR60 deformed steel bar for construction
- Loading Port:
- Tianjin
- Payment Terms:
- TT or LC
- Min Order Qty:
- 25 m.t.
- Supply Capability:
- 100000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords