• ASTM deformed steel bar for construction System 1
  • ASTM deformed steel bar for construction System 2
  • ASTM deformed steel bar for construction System 3
  • ASTM deformed steel bar for construction System 4
ASTM deformed steel bar for construction

ASTM deformed steel bar for construction

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

 Specifications of HRB400 Deformed Steel Bar:

Standard

GB

HRB400

Diameter

6mm,8mm,10mm,12mm,14mm,16mm,18mm,20mm,

22mm,25mm,28mm,32mm,36mm,40mm,50mm

Length

6M, 9M,12M or as required

Place of origin

Hebei, China mainland

Advantages

exact size, regular package, chemical and   mechanical properties are stable.

Type

Hot rolled deformed steel bar

Brand name

DRAGON

Chemical Composition: (Please kindly find our chemistry of our material based on HRB500 as below for your information)

Grade

Technical data of the original chemical composition (%) 

C

Mn

Si

S

P

V

HRB400

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

0.04-0.12

Physical capability

Yield Strength (N/cm²)

Tensile Strength (N/cm²)

Elongation (%)

≥400

≥570

≥14

 

Theoretical weight and section area of each diameter as below for your information:

Diameter(mm)

Section area (mm²)

Mass(kg/m)

Weight of 12m bar(kg)

6

28.27

0.222

2.664

8

50.27

0.395

4.74

10

78.54

0.617

7.404

12

113.1

0.888

10.656

14

153.9

1.21

14.52

16

201.1

1.58

18.96

18

254.5

2.00

24

20

314.2

2.47

29.64

22

380.1

2.98

35.76

25

490.9

3.85

46.2

28

615.8

4.83

57.96

32

804.2

6.31

75.72

36

1018

7.99

98.88

40

1257

9.87

118.44

50

1964

15.42

185.04

 

Usage and Applications of HRB400 Deformed Steel Bar:

Deformed bar is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy  and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger..

Packaging & Delivery of HRB400 Deformed Steel Bar:

Packaging Detail: products are packed in bundle and then shipped by container or bulk vessel, deformed bar is usually naked strapping delivery, when storing, please pay attention to moisture proof. The performance of rust will produce adverse effect.

Each bundle weight: 2-3MT, or as required

Payment term: TT or L/C

Delivery Detail: within 45 days after received advanced payment or LC.

Label: to be specified by customer, generally, each bundle has 1-2 labels

Trade terms: FOB, CFR, CIF

 

Deformed Steel Bar in container

Deformed Steel Bar in factory

Note:

1. Our products are produced according to national standard (GB), if not, supply according to national standards (GB) or agreement as customer required.

2. Other Grade and Standard Deformed Steel Bar we can supply:

    Grade: GR40/GR60, G460B/B500A/B500B/B500C,BST500S

    Standard: ASTM, BS, DIN

    The Minimum Order Quantity of these products is high, and need to be confirmed.

3. We can not only supply Deformed Steel Bar; if you need anything about building materials, please contact us for further information.

4. Please send us your detail specifications when inquire. We will reply to you as soon as possible. We sincerely hope we can establish a long stable business relationship.

 

ASTM deformed steel bar for construction

ASTM deformed steel bar for construction

ASTM deformed steel bar for construction

Q: How do steel rebars affect the environmental sustainability of a structure?
A structure's environmental sustainability can be influenced by steel rebars, which can have both positive and negative effects. On the positive side, steel rebars are an environmentally friendly choice because they are made from recycled materials. Steel is among the most recycled materials globally, which helps to decrease the demand for new resources and the associated environmental impacts of extraction and processing. Furthermore, steel rebars are highly durable and have a long lifespan, resulting in reduced maintenance and replacement requirements for structures reinforced with them. This in turn lessens the overall environmental impact related to the construction and demolition of structures. On the flip side, the production of steel rebars has some adverse environmental consequences. The manufacturing process involves high energy consumption, carbon emissions, and the release of pollutants into the atmosphere. Extracting and processing iron ore, as well as converting it into steel, can contribute to deforestation, air and water pollution, and habitat destruction. Nonetheless, sustainable manufacturing practices can help mitigate the negative impacts of steel rebars. For instance, employing energy-efficient technologies, utilizing renewable energy sources, and implementing strict emissions controls can assist in reducing the environmental footprint of steel production. Furthermore, the environmental sustainability of a structure also depends on the overall design and construction practices. By adopting sustainable design principles such as optimizing material usage, minimizing waste, and incorporating energy-efficient features, the negative effects of steel rebars can be further minimized. In conclusion, although the production process of steel rebars has some negative environmental impacts, their utilization in construction provides several sustainability advantages such as recycling, durability, and reduced maintenance requirements. By incorporating sustainable manufacturing practices and integrating them into environmentally conscious design and construction practices, the overall environmental sustainability of structures can be significantly improved.
Q: How do steel rebars affect the fire resistance of concrete structures?
Concrete structures can greatly increase their ability to withstand fire by incorporating steel rebars. These rebars serve as reinforcement, providing extra strength and stability to the structure and enabling the concrete to endure the intense heat of a fire. The fire resistance of concrete structures primarily relies on the fact that concrete has low thermal conductivity. When exposed to high temperatures, concrete undergoes spalling, where the outer layer breaks off due to the rapid expansion of trapped water. However, the presence of steel rebars helps prevent spalling by holding the concrete together and preventing it from disintegrating. Moreover, steel rebars have a higher melting point than concrete. This means that even when exposed to extreme heat, the rebars maintain their strength and integrity. Consequently, the overall structural stability of the concrete structure remains intact, even in the presence of fire. Steel rebars also act as a heat sink, absorbing and dissipating heat away from the surrounding concrete. This dissipation of heat prevents the formation and spread of localized hotspots throughout the structure, thereby reducing the risk of structural failure. To further enhance the fire resistance of concrete structures, specialized types of steel rebars, known as fire-resistant or fire-rated rebars, can be utilized. These rebars are specifically designed to withstand high temperatures for extended periods without losing their strength. They are often coated with materials such as epoxy or intumescent coatings, which offer additional protection against fire. In conclusion, steel rebars play a vital role in improving the fire resistance of concrete structures. Their presence enhances the overall structural stability, minimizes spalling, dissipates heat, and provides additional strength to withstand the intense heat generated during a fire.
Q: Can steel rebars be galvanized for additional protection?
Additional protection can be provided to steel rebars by galvanizing them. Galvanization involves applying a layer of zinc to the surface of the rebars, which acts as a protective barrier. This prevents corrosion and extends the lifespan of the rebars. In construction projects where exposure to moisture, chemicals, or other corrosive elements is anticipated, galvanized steel rebars are commonly used. The galvanization process can be carried out by immersing the rebars in a bath of molten zinc or by applying a zinc-rich coating through hot-dip galvanization or electroplating. As a result, a durable and corrosion-resistant coating is formed, which adds extra protection to the rebars, increasing their longevity and reducing the need for maintenance. In summary, galvanizing steel rebars is an effective method for enhancing their corrosion resistance and ensuring their long-term durability in a variety of applications.
Q: What are the factors to consider while calculating the required number of steel rebars in a project?
Some factors to consider while calculating the required number of steel rebars in a project include the structural design and requirements, the load-bearing capacity needed, the dimensions and layout of the structure, the type and grade of steel rebar being used, and any applicable building codes and regulations. Additionally, factors such as the spacing between rebars, the concrete cover thickness, and any potential corrosion protection measures may also need to be considered.
Q: What is the role of steel rebars in the construction of multi-level car parks?
The role of steel rebars in the construction of multi-level car parks is to provide reinforcement and strength to the concrete structures. Rebars are incorporated within the concrete to enhance its tensile strength, durability, and resistance to cracking or collapsing under heavy loads. They help distribute the weight and stress evenly, ensuring the structural integrity of the car park and ensuring it can safely support multiple levels of vehicles.
Q: What are the factors that affect the cost of steel rebars?
There are several factors that affect the cost of steel rebars. These include the price of raw materials such as iron ore and scrap metal, as well as the cost of energy and transportation. Additionally, market demand and supply, currency exchange rates, and government regulations can also impact the cost of steel rebars.
Q: Is cold-rolled ribbed steel bar thread steel?
I haven't heard of cold-rolled steel. Cold rolling is called thin plate
Q: Can steel rebars be used in the construction of offshore wind farms?
Yes, steel rebars can be used in the construction of offshore wind farms. They provide structural reinforcement and stability to the foundations and structures of offshore wind turbines, helping withstand the harsh marine environment and strong winds.
Q: How are steel rebars inspected for quality on construction sites?
In construction projects, steel rebars play a critical role by providing reinforcement and strength to concrete structures. It is crucial to ensure the quality of steel rebars in order to guarantee the safety and durability of the overall construction. To inspect the quality of steel rebars on construction sites, various methods are commonly used. The first and most basic method of quality inspection is visual examination. This involves visually inspecting the rebars for any visible defects such as cracks, deformations, rust, or surface irregularities. Any rebars with such flaws are immediately identified and rejected. Another method involves measuring and checking the dimensions of the rebars. Inspection personnel use measuring tools like calipers or tape measures to verify the length, diameter, and other dimensions of the rebars. Any deviation from the specified tolerances may result in rejection. Magnetic Particle Testing (MPT) is a non-destructive testing method that is commonly employed to detect surface and near-surface defects in steel rebars. In this technique, the rebar is magnetized and ferromagnetic particles are applied, which accumulate at any surface defects or cracks. Trained inspectors carefully examine the surface to identify any areas of concern. Ultrasonic Testing (UT) is another non-destructive testing method used for inspecting rebars. It involves transmitting ultrasonic waves through the rebar. These waves reflect back differently when they encounter defects like voids, cracks, or inclusions. Trained technicians analyze the reflected waves to identify and assess the quality of the rebars. Tensile Testing is carried out to determine the tensile strength of the rebars, which is crucial in assessing their quality. A sample rebar is pulled until it breaks, and the force required to do so is measured. This test helps determine the strength and ductility of the rebar, ensuring it meets the required standards. Chemical analysis is often conducted on steel rebars to ensure they meet the specified composition requirements. Samples are collected from the rebars, and various tests are performed to determine the chemical composition, including carbon, manganese, and other alloying elements. This analysis helps ensure that the rebars possess the necessary properties for the intended application. These inspection methods are typically carried out by qualified and experienced personnel, such as certified welding inspectors or quality control technicians. By implementing these quality inspection procedures, construction sites can ensure that the steel rebars used in their projects meet the required standards, thereby ensuring the safety and longevity of the structures being constructed.
Q: Can steel rebars be used in corrosive chemical environments?
Steel rebars can be used in corrosive chemical environments, but their performance and durability may be compromised. Steel is susceptible to corrosion when exposed to certain chemicals, especially those that are acidic or contain chlorides. In such corrosive environments, the rebars can undergo corrosion, leading to structural damage and reduced load-bearing capacity. To mitigate the corrosion risk, various measures can be taken. One common approach is to coat the rebars with a protective layer, such as epoxy or zinc coating, to create a barrier between the steel and the corrosive environment. Additionally, using stainless steel rebars or other corrosion-resistant alloys can provide better resistance against chemical corrosion. It is crucial to consider the specific chemicals present in the environment and consult with corrosion engineers and experts to determine the appropriate measures for using steel rebars in corrosive chemical environments. Proper maintenance and regular inspections are also necessary to monitor any signs of corrosion and take prompt corrective action to ensure the structural integrity and safety of the reinforced concrete structures.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords