• Aluminum Circles for Tea Kettle Manufacturing System 1
  • Aluminum Circles for Tea Kettle Manufacturing System 2
  • Aluminum Circles for Tea Kettle Manufacturing System 3
Aluminum Circles for Tea Kettle Manufacturing

Aluminum Circles for Tea Kettle Manufacturing

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
5 m.t.
Supply Capability:
1000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Grade:
1000 Series,3000 Series,5000 Series
Surface Treatment:
Brushed
Shape:
Round
Temper:
O-H112
Application:
Heat Sink

1. Structure of Aluminium Circles for Making Tea Kettles Description
    CC Aluminium in Coil Form for making Aluminium Circle is one semi-finished aluminium material. This coil can be     rolled down to aluminium coil,sheet,circle ect.  The alloy AA1050 is widly used in building, industry ect. Its weight is much lower than steel. So many customers choosed aluminium material instead of steel.

 

2.   Specification of Aluminium Circles for Making Tea Kettles

Aluminium Circles for Making Tea Kettles

Main Specification

Alloy

AA1xxx (AA1050, AA1060, AA1070, AA1100 etc.)

AA3xxx (AA3003, AA3004, AA3005, AA3105 etc.)

AA5xxx, AA6XXX (AA5052,AA5083, AA5754, AA6061, AA6062 etc.)

AA8xxx(AA8011, AA8006 etc.)

Temper

H14,H16, H18, H22, H24, H26, H32,O/F, T4, T6, T651

Thickmess

0.01mm-100mm

Width

30mm-1700mm

Standard

GB/T 3880-2006/ASTM

Special specification is available on customer's requirement

 

3.  Application of Aluminium Circles for Making Tea Kettles

(1).Interior: wall cladding, ceilings, bathrooms, kitchens and balconies, shutters, doors...

(2).Exterior: wall cladding, facades, roofing, canopies, tunnels,column covers , renovations...

(3).Advertisement: display platforms, signboards, fascia, shop fronts...

 

4.    Feature of Aluminium Circles for Making Tea Kettles

Surfact Quality :

 Be free from Oil Stain, Dent, Inclusion, Scratches, Stain, Oxide Dicoloration, Breaks, Corrosion, Roll Marks, Dirt Streaks and other defect which will interfere with use,

 

Mechenical Property:

Chemical Composite and Mechanical Property

 

5.    Certificate of Aluminium Circles for Making Tea Kettles

SGS and ROHS(if client request, paid by client), MTC(plant provided), Certificate of Origin(FORM A, FORM E, CO),  Bureau Veritas and SGS (if client request, paid by client), CIQS certificate

 

6.    Image of Aluminium Circles for Making Tea Kettles

 

Aluminium Circles for Making Tea Kettles

Aluminium Circles for Making Tea Kettles

Aluminium Circles for Making Tea Kettles

 

 

 

 

7.    Package and shipping of Aluminium Circles for Making Tea Kettles

First, plastic cloth with drying agent inside; Second, Pearl Wool ; Third, wooden cases with dry agent , fumigation wooden pallets, aluminum surface could cover blue PVC film

 

8.    FAQ

1) What is the delivery time?

Depends on actual order, around 20 to 35 days

2) What is the QC system:

We have QC staff of 20 persons and advanced equipment, each production is with MTC traced from Aluminum ingot lot.

3) What market do you mainly sell to?

Australia, America, Asia, Middle East, Western Europe, Africa etc 

 

Q: Is it possible to utilize aluminum as a material for manufacturing solar cells?
<p>Aluminum is not typically used to make solar cells due to its properties. Solar cells are usually made from materials like silicon, which is a semiconductor and can efficiently convert sunlight into electricity. Aluminum, being a good conductor, is used in the manufacturing process of solar cells for its electrical conductivity, but not as the active material that generates electricity. It is used in the form of aluminum paste in the back surface field of solar cells to create a conductive layer and in the frame to provide structural support. However, for the photovoltaic conversion process itself, other materials are more suitable.</p>
Q: Is it possible to use aluminum foil as a substitute for a non-stick surface when cooking eggs in a frying pan?
<p>While it is technically possible to use aluminum foil to cook eggs in a frying pan, it is not recommended. Aluminum foil can stick to the eggs and make them difficult to remove without breaking. Additionally, aluminum foil can tear or puncture easily, leading to hot oil spills and potential safety hazards. It's better to use a non-stick pan or a well-seasoned cast iron pan for cooking eggs to ensure easy release and even cooking.</p>
Q: Is it possible to utilize recycled aluminum in the manufacturing of solar panels or wind turbines?
<p>Yes, recycled aluminum can be used in the production of solar panels and wind turbines. Recycled aluminum is often used in the manufacturing process due to its properties such as low density, high strength, and excellent corrosion resistance. In solar panels, it can be used for the frame and mounting structures, while in wind turbines, it is commonly used for the construction of the turbine blades and other components. The use of recycled aluminum not only reduces the environmental impact of mining new aluminum but also contributes to the sustainability of renewable energy technologies.</p>
Q: Describe the process of electrolysis used in aluminum production.
<p>The process of electrolysis for aluminum production involves the Hall-H茅roult process, which is the primary method for extracting aluminum from its ore, bauxite. First, bauxite is refined to produce aluminum oxide (alumina). This alumina is then dissolved in a molten cryolite bath, which lowers the melting point and increases the electrical conductivity. Large amounts of electricity are passed through the bath, causing the alumina to decompose into aluminum metal and oxygen gas. The aluminum collects at the bottom of the cell and is periodically tapped off, while the oxygen is released into the atmosphere. This energy-intensive process is crucial for the aluminum industry, as it allows for the production of large quantities of aluminum, a key material in various industries.</p>
Q: What are some potential alternative uses for recycled aluminum that haven't been widely considered?
<p>Recycled aluminum has a wide range of potential uses beyond the common ones like beverage cans and automotive parts. It can be used in the construction of buildings and infrastructure due to its strength and lightness. Additionally, it can be utilized in the aerospace industry for crafting aircraft components, given its resistance to corrosion and fatigue. In the electronics sector, recycled aluminum can be employed in the production of various components, such as circuit boards and casings. Moreover, it can be used in the creation of consumer goods like furniture, as well as in the packaging industry for food and pharmaceutical products. The versatility of recycled aluminum makes it a sustainable choice for many industries, reducing waste and environmental impact.</p>
Q: Explain the economic and job market implications of using aluminum.
<p>The use of aluminum has significant impacts on the economy and job market. It is a key material in various industries, including construction, automotive, aerospace, and consumer goods, which drives demand and economic growth. Aluminum production and processing create jobs directly in mining, refining, and manufacturing sectors, and indirectly in related services and supply chains. Additionally, its lightweight and corrosion-resistant properties make it valuable for energy-efficient transportation, contributing to environmental sustainability and opening new job opportunities in green technologies. However, it also presents challenges such as the need for energy-intensive production processes and the management of waste, which require innovative solutions and can lead to job creation in recycling and environmental management.</p>
Q: Is it possible to employ methods for recycling aluminum that are less harmful to the environment?
<p>Yes, there are less harmful methods for recycling aluminum. One such method is mechanical recycling, which involves shredding and melting aluminum without the need for chemical processing, reducing environmental impact. Additionally, promoting a circular economy by designing products for disassembly and recycling can minimize waste. Encouraging consumer participation in recycling programs and improving recycling technology also contribute to more sustainable aluminum recycling practices.</p>
Q: Is aluminum capable of functioning as a catalyst in chemical reactions?
<p>Aluminum is not typically used as a catalyst in chemical reactions. Catalysts are substances that increase the rate of a chemical reaction without being consumed in the process. Aluminum, being a metal, does not have the properties necessary to act as a catalyst in most reactions. However, it can be used in certain reactions as a reducing agent or in the form of organoaluminum compounds, which may participate in catalytic processes, but these are not common applications.</p>
Q: Is it possible to utilize aluminum in the creation of innovative tools and equipment?
<p>Yes, aluminum can be used to make new types of tools and equipment. It is a lightweight, durable, and corrosion-resistant metal, making it ideal for various applications. Aluminum's high strength-to-weight ratio and ease of machinability allow it to be used in the manufacturing of tools, machinery parts, and equipment across industries such as automotive, aerospace, and construction. Additionally, its recyclability and abundance make it an environmentally friendly choice for new tool and equipment designs.</p>
Q: Explain how aluminum influences the synthesis and function of neurotransmitters.
<p>Aluminum has been suggested to affect the production of neurotransmitters by potentially disrupting the normal functioning of enzymes and receptors involved in neurotransmitter synthesis and release. It may interfere with the uptake of essential metals like magnesium and zinc, which are crucial for the proper functioning of neurotransmitter systems. Aluminum can also alter the permeability of cell membranes, affecting the transport of neurotransmitters across the synaptic cleft. Additionally, there is evidence that aluminum may contribute to oxidative stress, which can impair the synthesis and function of neurotransmitters. However, it's important to note that the exact mechanisms are not fully understood, and more research is needed to establish a definitive link between aluminum exposure and neurotransmitter dysfunction.</p>

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords