• 10% Ash Foundry Coke for Foundry company with S 0.6%max System 1
  • 10% Ash Foundry Coke for Foundry company with S 0.6%max System 2
10% Ash Foundry Coke for Foundry company with S 0.6%max

10% Ash Foundry Coke for Foundry company with S 0.6%max

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
20.7
Supply Capability:
1007 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Brief Introduction

Foundry Coke is the main fuel of melting iron in the oven. It can melt the materials in the over, make the iron reach great heat, and keep good air permeability by sustain stock column. Thus, the foundry coke should have the characteristics of big block, low reactivity, small porocity, enough anti-crush strengh, low ash and low sulphur.

The coke handled by our cooperation is made from superior coking coal of Shanxi province. Provided with the advantages of low ash, low sulphur and high carbon. Our coke is well sold in European, American, Japanese and South-east Asian markets. Our owned Coke plant are located in Shanxi Province and supplying of you many kinds of coke.

we supply Foundry Coke long-term, its characteristic is best strength, low sulfur and phosphorus,thermal stability.

Specifications:

PARAMETER   UNIT GUARANTEE VALUE

ASH %

8% max

10% max

12% max

V.M.% MAX

1.5% max

1.5% max

2% max

SULFUR %

0.65% max

0.65% max

0.7% max

MOISTURE

5% max

5% max

5% max

Size

80mm-120mm80-150100-150mm, or as request

 

Features

1. Our quality is always quite good and stable which is producing and packing according to customers' requirements.

2. Putting Client profile into first, achieved mutual benefit.

3. Good partner on business. It's a good and wise choice for customers' to purchase from us. It's our great honor to cooperate with you.It is more and more widely-used

4. We can supply documents as follows:

- bill of loading,

-Invoice,

-Packing List

-Insurance

-standard inspection pictures of the container as specified by INSPECTORATE

-or more requested by buyer.

Pictures

 

10% Ash Foundry Coke for Foundry company with S 0.6%max

10% Ash Foundry Coke for Foundry company with S 0.6%max

FAQ

1.    What is the packing?

In 25kg bag/ In jumbo bags without pallet/ Two jumbo bags with one pallet/ or as customers’ request

2. What is the production capacity?

10 thousand tons per month

3 What is payment term?

Irrevocable LC at sight/ 20% down payment by T/T and 80% against BL copy byT/T/ or to be discussed

4 What is the service?

We will send sample to the third party(CIQ, CCIC, SGS,BV or to be discussed) for checking, and present the test certificate and loading repot of shipment.

 

 

Q: What are the potential uses of carbon nanomaterials in medicine?
Carbon nanomaterials have immense potential in medicine due to their unique properties. They can be used for targeted drug delivery, imaging, tissue engineering, and diagnostics. Carbon nanotubes, for example, can transport drugs directly to cancer cells, reducing side effects. Additionally, carbon nanomaterials can provide high-resolution imaging of tissues and organs, aiding in early disease detection. Furthermore, they can be used to create scaffolds for tissue regeneration, promoting the growth of new cells and tissues. Overall, carbon nanomaterials hold great promise for revolutionizing medicine and improving patient outcomes.
Q: How does carbon dioxide contribute to ocean acidification?
Ocean acidification is caused by the presence of carbon dioxide, which forms carbonic acid when it dissolves in seawater. This reaction results in an increase in hydrogen ions and a decrease in pH, making the water more acidic. Human activities, especially the burning of fossil fuels, are leading to a rise in carbon dioxide emissions. As a result, more carbon dioxide is being absorbed by the oceans, disrupting the natural balance between atmospheric and oceanic carbon dioxide levels. This excess absorption leads to an accumulation of carbon dioxide in the seawater. The increased acidity of the seawater poses a significant threat to marine life. Many organisms, such as corals, shellfish, and certain types of plankton, rely on calcium carbonate to construct their shells or skeletons. However, in more acidic water, the availability of carbonate ions, necessary for calcium carbonate formation, decreases. Consequently, these organisms struggle to build and maintain their protective structures, rendering them more susceptible to predation and other dangers. Ocean acidification also has adverse effects on the growth, development, and behavior of numerous other marine species. For example, it can disrupt fish reproductive cycles and alter the behavior of certain species, making them more vulnerable to predators or adversely affecting their ability to locate food or mates. Moreover, ocean acidification can trigger a chain reaction that impacts entire marine ecosystems. The interconnectedness of species in complex food webs means that any disturbance to one species can have far-reaching consequences for others. If the population of a particular fish species declines due to acidification, it can have a ripple effect on the entire food chain, influencing the abundance and distribution of other species. In conclusion, the process of ocean acidification occurs as carbon dioxide dissolves in seawater and forms carbonic acid, resulting in an increase in hydrogen ions and a decrease in pH. This process has detrimental effects on marine organisms, particularly those reliant on calcium carbonate for their shells or skeletons. It also disrupts the growth, development, and behavior of various marine species and can have cascading impacts on entire ecosystems.
Q: How does carbon contribute to air pollution?
Carbon contributes to air pollution primarily through the combustion of fossil fuels. When carbon-based fuels such as coal, oil, and natural gas are burned for energy, they release carbon dioxide (CO2) into the atmosphere, which is a greenhouse gas that contributes to global warming and climate change. Additionally, incomplete combustion of these fuels can produce other pollutants such as carbon monoxide (CO), volatile organic compounds (VOCs), and particulate matter, which all have detrimental effects on air quality and human health.
Q: What is the role of carbon in photosynthesis?
The role of carbon in photosynthesis is essential. Carbon dioxide (CO2) is one of the primary reactants in the process of photosynthesis. During photosynthesis, plants and other photosynthetic organisms use carbon dioxide along with water and sunlight energy to produce glucose (a simple sugar). This glucose serves as the main source of energy for the plant's growth and development. Carbon dioxide enters the leaf through tiny pores called stomata and diffuses into the chloroplasts, where photosynthesis takes place. Inside the chloroplasts, carbon dioxide combines with water in the presence of sunlight and chlorophyll to undergo a series of chemical reactions known as the Calvin cycle or the dark reactions. In this cycle, glucose is synthesized and stored as a source of energy for the plant. The carbon atoms from carbon dioxide are the building blocks of glucose and other organic compounds formed during photosynthesis. Through a complex series of enzymatic reactions, carbon dioxide is converted into carbohydrates, lipids, proteins, and nucleic acids, which are essential for the plant's growth and survival. Photosynthesis not only helps in the production of glucose but also plays a significant role in the global carbon cycle. It is the process through which plants remove carbon dioxide from the atmosphere and release oxygen as a byproduct. This helps in regulating the levels of carbon dioxide in the atmosphere, mitigating climate change, and maintaining the oxygen balance necessary for all living organisms. In summary, carbon plays a crucial role in photosynthesis by serving as the raw material for the synthesis of glucose and other organic compounds. It is through this process that plants convert carbon dioxide into energy-rich molecules, contributing to their growth, survival, and the overall balance of carbon in the Earth's atmosphere.
Q: What are the different forms of carbon?
Carbon exists in several different forms, known as allotropes. The most common forms of carbon include diamond, graphite, and amorphous carbon. Diamond is the hardest known natural substance and consists of carbon atoms arranged in a crystal lattice structure. It has a high refractive index and is often used in jewelry due to its brilliance and clarity. Graphite, on the other hand, has a layered structure where carbon atoms are arranged in sheets. It is a soft and slippery material, commonly used in pencils and lubricants. Graphite is also a good conductor of electricity, making it suitable for applications in batteries and electrodes. Amorphous carbon refers to a group of carbon materials that lack a well-defined crystal structure. Examples of amorphous carbon include charcoal, soot, and activated carbon. These forms of carbon have diverse applications, such as in water and air purification, as well as in the manufacturing of electrodes and pigments. Other forms of carbon exist as well, such as fullerenes and carbon nanotubes, which have unique properties and are extensively studied for their potential applications in various fields, including nanotechnology and electronics. In summary, carbon can take on different forms depending on its atomic arrangement, resulting in a range of materials with distinct physical and chemical properties. These forms of carbon find applications in various industries and are vital for our everyday lives.
Q: How does deforestation contribute to carbon emissions?
Deforestation contributes to carbon emissions by releasing large amounts of stored carbon dioxide (CO2) into the atmosphere. Trees act as carbon sinks, absorbing CO2 from the air during photosynthesis and storing it in their biomass. When forests are cleared or burned, this stored CO2 is released back into the atmosphere, adding to greenhouse gas levels and contributing to climate change.
Q: How is carbon used in the production of nanoelectronics?
Carbon is used in the production of nanoelectronics due to its unique properties. It can be structured into nanoscale materials like carbon nanotubes and graphene, which possess excellent electrical conductivity and mechanical strength. These carbon-based materials are utilized in various components of nanoelectronic devices, such as transistors and sensors, to enhance their performance and efficiency.
Q: What is carbon nanotube?
Carbon nanotubes, which are made up of carbon atoms arranged in a hexagonal lattice pattern, are cylindrical structures. Their size is incredibly small, measuring in the nanometer scale, and their length can vary from a few nanometers to several centimeters. The remarkable properties of carbon nanotubes make them highly desirable for a wide range of applications. They possess exceptional strength, surpassing that of any other known material, which makes them perfect for use in structural composites. Additionally, they exhibit excellent electrical conductivity, thermal conductivity, and chemical stability, making them valuable in fields like electronics, energy storage, and catalysis. There are two primary types of carbon nanotubes: single-walled nanotubes (SWNTs) and multi-walled nanotubes (MWNTs). Single-walled nanotubes consist of a single layer of carbon atoms rolled into a tube, while multi-walled nanotubes consist of multiple concentric layers of carbon atoms. The arrangement of carbon atoms and the tube's diameter determine the nanotube's properties. Due to their unique properties, carbon nanotubes have the potential to revolutionize various industries. Researchers are exploring their use in electronics as high-performance transistors, interconnects, and sensors. They also hold promise in energy storage, enabling batteries and supercapacitors with higher energy densities and faster charging rates. Furthermore, their large surface area and distinctive chemical properties make them suitable for catalytic applications, such as water purification and chemical synthesis. Despite the immense potential, challenges remain in the large-scale production and commercialization of carbon nanotubes. However, ongoing research and development efforts continue to expand their applications, making carbon nanotubes an exciting field of study with significant future possibilities.
Q: How do you make your own carbon fiber bar?Know. ID is how to make? Don't copy anything that has nothing to do with it
4. application development, at present, various applications for carbon fiber annual demand ratio is as follows: sports applications of about 30%, aviation applications for 10%, industrial applications for 60%. Three important applications in sports are the golf club, fishing rod and tennis racket frame. At present, it is estimated that the annual output of big bat is 34 million. According to the national geographic classification, these big clubs are mainly made in the United States, China, Japan and Taipei, China, and the United States and Japan are the main consumer of golf clubs, accounting for more than 80%. 40% of the carbon fiber balls in the world are made from carbon fiber of TORAY. Carbon fiber fishing rods around the world produce about 20 million pairs a year, which means this application has a steady demand for carbon fiber. The market capacity of tennis racket frames is about 6 million pairs per year. Other sports applications include hockey sticks, ski sticks, archery, and bicycles, while carbon fiber is also used in rowing, rowing, surfing, and other marine sports. In 1992, the airline's demand for carbon fiber began to decline, mainly due to the decline of the commercial aircraft industry, but it recovered rapidly in the early 1995. The main reason for the recovery is that the overall efficiency of the production has been improved, but also began to fully produce Boeing 777 aircraft, TORAY carbon fiber has been used
Q: Is there a line cutting of carbon fibers?
Having the cutting of carbon fibers by wire cutting.Carbon fiber products: carbon fiber reinforced one-way plate, the molding process is to impregnated the carbon fiber resin in the mold curing and continuous pultrusion. Using high quality carbon fiber material and good basic resin, carbon fiber board has good tensile strength, corrosion resistance, seismic resistance, impact resistance and other good performance.The carbon fiber unidirectional plate can give full play to the strength and the elastic modulus of the carbon fiber, and can avoid the resin curing stage of the carbon fiber unidirectional fabric during construction, and has high strength utilization efficiency and convenient construction.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches