• Three Phase AC DC Hybrid Solar Inverter 5KVA-12KVA/8-19.2KW System 1
  • Three Phase AC DC Hybrid Solar Inverter 5KVA-12KVA/8-19.2KW System 2
  • Three Phase AC DC Hybrid Solar Inverter 5KVA-12KVA/8-19.2KW System 3
  • Three Phase AC DC Hybrid Solar Inverter 5KVA-12KVA/8-19.2KW System 4
Three Phase AC DC Hybrid Solar Inverter 5KVA-12KVA/8-19.2KW

Three Phase AC DC Hybrid Solar Inverter 5KVA-12KVA/8-19.2KW

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT or LC
Min Order Qty:
1000 unit
Supply Capability:
10000 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Output Power:
5.5-13.2
Inveter Efficiency:
98.2
Output Voltage(V):
230V / 400V AC
Input Voltage(V):
160V~800V DC
Output Current(A):
21.7A~52A
Output Frequency:
50Hz / 60Hz

Key Parameters

Output Type:Triple, Pure Sine Wave

Type:DC/AC Inverters

Inverter Efficiency:98.2%

 

Other attributes

Model Number:XD5KTR, XD6KTR, XD8KTR, XD10KTR, XD12KTR

Input Voltage:160V~800V DC

Output Voltage:230V / 400V AC

Output Current:21.7A~52A

Output Frequency:50Hz / 60Hz

Size:534W*440H*220D mm

Certificate:CE/IEC/ISO/TUV

Warranty:5 years

Weight:30kg

Product Name:DC AC Hybrid Solar Inverter(With Storage)

Battery Type:Lithium/Lead-acid

Rated Power:5000~12000W

Waveform:Pure Sine Wave

Power Factor:0.8 leading~0.8 lagging

Max. PV Input Power:8~19.2kW

Max. PV Input Voltage:1100V

Max. PV Input Current:20A

Communication:RS485 / CAN / WIFI / 4G / LAN / Bluetooth

Packaging and delivery

Package Type:Standard Export Package

Supply Ability:10000 Piece/Pieces per Month

 

Lead time

Quantity (pieces)1 - 100   101 - 500   501 - 1000       > 1000

Lead time (days)    7               14              21        To be negotiated

Customized packaging

Q: Can a solar inverter be used in areas with unstable power grids?
Yes, a solar inverter can be used in areas with unstable power grids. Solar inverters are designed to convert the direct current (DC) produced by solar panels into alternating current (AC) that can be used to power homes or businesses. In areas with unstable power grids, the solar inverter can help stabilize the electricity supply by converting the solar energy into usable AC power, independent of the grid's stability. Additionally, some advanced solar inverters come with features like grid-tie functionality, battery storage, or grid support functions that further enhance their ability to adapt to unstable power grids.
Q: Can a solar inverter be used with a solar-powered backup generator?
Yes, a solar inverter can be used with a solar-powered backup generator. The solar inverter is responsible for converting the direct current (DC) generated by the solar panels into alternating current (AC) that can be used to power household appliances and electrical devices. When connected to a solar-powered backup generator, the solar inverter can efficiently regulate and distribute the electricity produced by the generator, providing a reliable and sustainable source of power.
Q: How does a solar inverter handle voltage harmonics?
A solar inverter handles voltage harmonics by using filters and control algorithms to reduce or eliminate the distortion caused by harmonics in the power generated by the solar panels. These filters and algorithms help to ensure that the electricity produced by the solar panels is of high quality and compliant with the desired voltage standards.
Q: What happens to excess solar energy generated by the inverter?
Excess solar energy generated by the inverter can be either stored in batteries for later use or fed back into the electrical grid, depending on the setup of the solar power system.
Q: Can a solar inverter be used with a solar-powered security camera system?
Yes, a solar inverter can be used with a solar-powered security camera system. A solar inverter is responsible for converting the direct current (DC) produced by the solar panels into alternating current (AC) that can be used to power electrical devices. In the case of a solar-powered security camera system, the solar panels generate DC power, which is then converted by the solar inverter into AC power that can be used to operate the cameras and other components of the system.
Q: Can a solar inverter be used in regions with high levels of dust or debris?
Yes, a solar inverter can be used in regions with high levels of dust or debris. However, it is important to regularly clean and maintain the inverter to ensure optimal performance and prevent any damage caused by the accumulation of dust or debris.
Q: How much maintenance is required for a solar inverter?
Solar inverters require regular maintenance to ensure optimal performance and longevity. The frequency and level of maintenance may vary depending on the specific make and model of the inverter, as well as environmental factors. Generally, maintenance tasks include regular cleaning to remove dust and debris, checking and tightening electrical connections, inspecting for any signs of wear or damage, and updating software or firmware as needed. It is recommended to follow the manufacturer's guidelines and have a professional solar technician perform periodic maintenance to maximize the efficiency and reliability of the solar inverter.
Q: How does a solar inverter protect against voltage fluctuations?
A solar inverter protects against voltage fluctuations by continuously monitoring and regulating the electrical output from the solar panels. It adjusts the voltage and frequency of the direct current (DC) generated by the panels to match the utility grid's alternating current (AC) voltage requirements, ensuring a stable and consistent power supply. Additionally, solar inverters have built-in protection mechanisms such as surge suppression and overvoltage/undervoltage detection, which safeguard the system from voltage spikes or drops, preventing any potential damage to the solar panels or electrical devices.
Q: How do you calculate the maximum power point voltage for a solar inverter?
To calculate the maximum power point voltage for a solar inverter, you need to determine the voltage at which the solar panels produce the maximum power output. This can be done by following the voltage-current (V-I) curve of the solar panels. By measuring the voltage and current at different points on the curve, you can identify the point where the product of voltage and current is the highest, indicating the maximum power point voltage.
Q: How does a solar inverter handle voltage flicker in the grid?
A solar inverter handles voltage flicker in the grid by employing various control mechanisms. It continuously monitors the grid voltage and adjusts its own output accordingly to compensate for any fluctuations or flickering. By dynamically regulating its power output, the solar inverter helps stabilize the grid voltage and mitigate the impact of voltage flicker, ensuring a stable and reliable power supply.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords