• T Type Ductile Iron Pipe DN350 Socket spigot pipe System 1
T Type Ductile Iron Pipe DN350 Socket spigot pipe

T Type Ductile Iron Pipe DN350 Socket spigot pipe

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
200 m.t
Supply Capability:
30000 m.t/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification:

1) The standard of pipe: ISO2531:1998, EN545:2006K9 K8

2) Effective length: 6m/5.7m

3) Inner cement line: Portland cement lineas per ISO4179

4) Zinc coating: at least 130g/m2 as per ISO8179

5) Bitumen painting: at least 70μm as per ISO8179

6)With 102% quantity of NBR, SBR, or EPDM ring asper ISO4633

7) DN80-DN1200

8) Highstrength, lighter than grey iron, good corrosion resistance, no furring, smallflow resistance, easy fixing, long life tome about 100 yeas

9)Checked by automatic inspection equipment

10) Composition:

Chemical composition

Chemical composition

Ductile Cast Iron  Pipe (%)

Grey iron pipe (%)

Steel pipe (%)

C

3.5-4.0

3.2-3.8

0.1-0.2

Si

1.9-2.6

1.4-2.2

0.15-0.4

Mn

0.15-0.45

0.4-0.6

0.3-0.6

P

0.06

0.3

0.02-0.03

S

0.02

0.1

0.02-0.03

Mg

0.03-0.06

 

 

11) Feature:

Mechanical  properties

 

Ductile Cast Iron  Pipe

Grey Iron Pipe

Steel Pipe

Tensile  Strength(Mpa)

420

150-260

400

Yield Strength(Mpa)

300

No Confirmation

No Confirmation

Bending  Strength(Mpa)

590

200-360

400

Elongation (%)

10

Neglected

18

Brinell  Hardness(HBS)

≤230

230

About 140

12) T type mechanical joint

13) Packing: in bulk or container

PACKING: 1) Pipesare bundled together with the steel belt.

2) Wooden pieces are put between the pipes.


Q: Can ductile iron pipes be used for water supply in remote areas?
Yes, ductile iron pipes can be used for water supply in remote areas. Ductile iron pipes are known for their strength and durability, making them suitable for various applications, including water supply systems. Their resistance to corrosion and ability to withstand high pressure make them a reliable choice for transporting water even in remote areas where maintenance and accessibility may be challenging.
Q: What's the difference between cast iron pipe and steel pipe?
Steel tube (Steel pipe) production technology development began in the bicycle manufacturing industry, the rise of the early nineteenth Century during the oil development, the two world war ships, boilers, aircraft manufacturing, manufacturing of power boiler after the Second World War, the development of chemical industry of petroleum and natural gas drilling and transportation, will effectively promote the the yield and quality of varieties, the development of steel tube industry.
Q: How do ductile iron pipes handle thermal cycling in industrial applications?
Ductile iron pipes are well-suited for handling thermal cycling in industrial applications. Due to their high thermal conductivity and low thermal expansion coefficient, they can effectively and safely withstand the stresses caused by repeated heating and cooling cycles. This makes them highly resistant to cracking, distortion, or other forms of thermal damage, ensuring their durability and reliability in industrial environments.
Q: Can ductile iron pipes be used in acidic environments?
Yes, ductile iron pipes can be used in acidic environments. Ductile iron has excellent resistance to corrosion, including acidic conditions, due to its protective oxide layer. This makes it a suitable choice for applications in which exposure to acids is expected.
Q: Can ductile iron pipes be used in areas with high soil settlement?
Ductile iron pipes are suitable for areas with high soil settlement due to their strength and durability. They can withstand external loads and ground movement, making them an ideal choice for such areas. Additionally, these pipes have a high resistance to corrosion, making them even more suitable for use in areas with high soil settlement. However, it is important to consider factors such as proper installation techniques, appropriate bedding and backfill materials, and regular maintenance to ensure the longevity and performance of the ductile iron pipes in these areas. Consulting with a qualified engineer or pipe manufacturer can provide more specific guidance based on the site's conditions and requirements.
Q: How are ductile iron pipes made?
The manufacturing of ductile iron pipes involves a specific process called centrifugal casting. In this process, molten iron is poured into a rotating mold, typically made of steel. The rotation of the mold creates centrifugal force, which evenly distributes the molten iron, resulting in high-quality pipes. To start the manufacturing process, a mixture of scrap iron, steel, and recycled material is melted at extremely high temperatures in a furnace. Once the molten iron reaches the desired temperature and consistency, it is ready to be cast into pipes. To prevent the molten iron from cooling too quickly, the rotating mold is preheated. This preheating also contributes to achieving a smooth surface finish on the pipes. The molten iron is then poured into the rotating mold through a central sprue. As the mold spins, centrifugal force forces the molten iron against the inner walls of the mold. This rapid solidification results in dense, strong, and corrosion-resistant pipes. The centrifugal force also helps remove impurities or slag from the inner surface of the pipe, further enhancing its quality. Once the casting process is complete, the mold is allowed to cool, and the pipe is removed. The pipes undergo various tests to ensure they meet the required quality standards. These tests include checking dimensions, mechanical properties, and surface finish. After passing the quality tests, ductile iron pipes are typically coated with a protective lining to prevent corrosion and extend their lifespan. The type of lining used, such as cement mortar, epoxy, or polyethylene, depends on the intended application of the pipes. In conclusion, the centrifugal casting process is utilized to manufacture ductile iron pipes. This process ensures the production of high-quality pipes that are strong, corrosion-resistant, and have a smooth surface finish.
Q: What is the maximum allowable deflection for ductile iron pipes?
The maximum allowable deflection for ductile iron pipes is typically specified by industry standards and guidelines, such as those provided by the American Water Works Association (AWWA) and the Ductile Iron Pipe Research Association (DIPRA). These standards specify the maximum allowable deflection as a percentage of the pipe's outside diameter. According to AWWA C150/A21.50 and DIPRA's Technical Bulletin No. 10, the maximum allowable deflection for ductile iron pipes can vary depending on factors such as pipe size, wall thickness, and soil conditions. However, a common rule of thumb is that the maximum allowable deflection should not exceed 3% of the pipe's outside diameter. It is important to note that exceeding the maximum allowable deflection can result in potential structural issues and reduced performance of the ductile iron pipe. Therefore, it is crucial to adhere to the industry standards and guidelines to ensure the proper installation and functioning of ductile iron pipes.
Q: Can ductile iron pipes be used for underground chemical transport systems?
Ductile iron pipes are commonly used for various applications due to their strength, durability, and resistance to corrosion. However, when it comes to underground chemical transport systems, there are certain factors that need to be considered before choosing ductile iron pipes as the suitable material. Firstly, the type of chemicals being transported should be evaluated. Ductile iron pipes are generally resistant to a wide range of chemicals, including acids, alkalis, and organic solvents. However, there are some chemicals that can corrode or react with the iron content of the pipes, leading to degradation and potential leakage. Therefore, it is crucial to assess the chemical compatibility and consult with chemical engineers or experts to determine whether ductile iron pipes are suitable for specific chemical transport applications. Secondly, the concentration and temperature of the chemicals should be taken into account. Elevated temperatures and high concentrations of certain chemicals can accelerate the corrosion process, potentially compromising the integrity of the pipes. It is essential to assess the operating conditions and ensure that the ductile iron pipes can withstand the chemical concentration and temperature levels. Additionally, the potential presence of abrasive or erosive chemicals should be considered. If the transported chemicals contain abrasive particles or have erosive properties, it may lead to increased wear and tear on the inner surface of the pipes, reducing their lifespan and potentially causing leaks. In such cases, alternative materials with higher resistance to abrasion or erosion may be more suitable. Lastly, it is important to comply with relevant regulations and standards. Different countries or regions may have specific requirements for underground chemical transport systems, including the choice of materials. It is necessary to ensure that ductile iron pipes meet the necessary standards and are approved for use in such applications. In conclusion, while ductile iron pipes have many desirable properties for various applications, including underground use, their suitability for chemical transport systems depends on several factors. Chemical compatibility, concentration and temperature levels, the presence of abrasive or erosive chemicals, and compliance with regulations should all be carefully evaluated before deciding to use ductile iron pipes for underground chemical transport systems. Consulting with experts in the field is highly recommended to ensure the safety and effectiveness of the chosen piping material.
Q: What are the different types of valves available for ductile iron pipe?
There are several types of valves available for ductile iron pipe, including gate valves, butterfly valves, check valves, ball valves, and globe valves.
Q: Is the water cast iron pipe 100% for hydrostatic test?
As long as it's a water pipe, it must be tested. Otherwise, how do you know it leaks?.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords