• Omron Solar Inverter String Grid-Tied PV Inverter KSG-50K-HV / KSG-60K-HV System 1
  • Omron Solar Inverter String Grid-Tied PV Inverter KSG-50K-HV / KSG-60K-HV System 2
  • Omron Solar Inverter String Grid-Tied PV Inverter KSG-50K-HV / KSG-60K-HV System 3
  • Omron Solar Inverter String Grid-Tied PV Inverter KSG-50K-HV / KSG-60K-HV System 4
  • Omron Solar Inverter String Grid-Tied PV Inverter KSG-50K-HV / KSG-60K-HV System 5
  • Omron Solar Inverter String Grid-Tied PV Inverter KSG-50K-HV / KSG-60K-HV System 6
Omron Solar Inverter String Grid-Tied PV Inverter KSG-50K-HV / KSG-60K-HV

Omron Solar Inverter String Grid-Tied PV Inverter KSG-50K-HV / KSG-60K-HV

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
50 pc
Supply Capability:
15000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Output Power:
50KW/60KW
Inveter Efficiency:
98.2%-98.6%
Output Voltage(V):
480
Input Voltage(V):
720
Output Current(A):
61A/72A
Output Frequency:
50 / 60Hz±5Hz

Product Description:

Max. PV voltage up to 1000V Three MPPT

DC/AC Type Ⅱ SPD optional Positive DC fuse optional

High efficiency up to 98.6% String monitoring optional

Reactive power controller LVRT/HVRT/FRT function

Technical Specifications:




FAQ:

Q:How the output voltage of the PV inverter and the grid-connected voltage are determined

Inverter is the DC power (battery, battery) into alternating current (usually 220V, 50Hz sine wave). It consists of inverter bridge, control logic and filter circuit. Widely used in air conditioning, home theater, electric wheel, power tools, sewing machines, DVD, VCD, computer, TV, washing machine, range hood, refrigerator, video recorders, massage, fan, lighting and so on. In foreign countries

Q:Installation and maintenance of photovoltaic grid - connected inverter

only when the local power sector permission by the professional and technical personnel to complete all the electrical connection before the inverter can be connected.

Q:What is the difference between a PV grid-connected inverter and an off-grid inverter?

Off-grid inverter is equivalent to their own to establish an independent small power grid, mainly to control their own voltage, is a voltage source.

Q:After the PV inverter, how to achieve the same period before the network?

Solar panel simulator: with MPPT function, simulated morning, noon, afternoon, evening, rainy weather, solar panels produced under different conditions in different voltages.

Q:Is the PV inverter a current source or a voltage source?

According to the waveform modulation method can be divided into square wave inverter, stepped wave inverter, sine wave inverter and modular three-phase inverter.

Q:Photovoltaic grid-connected inverter without DC emc how will happen

Solar photovoltaic power generation technology is the use of solar cells, the photovoltaic effect of semiconductor materials, solar radiation can be directly converted into a new type of power generation system, solar energy is a radiant energy, solar power means --- to direct conversion of sunlight Into electricity,

Q:What is the difference between low voltage grid connection and medium voltage grid connection?

For photovoltaic power plants when the power system accidents or disturbances caused by photovoltaic power plant grid voltage drop, in a certain voltage drop range and time interval, the photovoltaic power plant can ensure that non-off-line continuous operation.

Q:Is the grid side of the grid and the inverter?

The grid load side of the grid is the grid. The inverter is an important part of the PV grid-connected system and can not be regarded as an external load. Photovoltaic power generation system is included in both grid and off-grid.

Q:PV grid-connected inverter and independent inverter in the control of what is the difference

The independent inverter in the output voltage phase amplitude of the frequency control is initially set good. Independent inverter, you should refer to off-grid inverter, do not need to consider the grid situation.


Product Images:



Production Process Photos:




Q: Can a solar inverter be used in standalone power systems?
Yes, a solar inverter can be used in standalone power systems. Standalone power systems, also known as off-grid systems, are not connected to the main electricity grid and rely on alternative energy sources like solar panels. A solar inverter converts the direct current (DC) generated by the solar panels into usable alternating current (AC) electricity, which can power various electrical devices in standalone power systems.
Q: How does shade affect the performance of a solar inverter?
Shade significantly impacts the performance of a solar inverter by reducing the overall energy production. When a solar panel is partially shaded, it creates multiple voltage levels throughout the array, leading to a decrease in the overall power output. This shading effect causes the inverter to work inefficiently as it struggles to optimize energy conversion. Consequently, shade can significantly hinder the performance and efficiency of a solar inverter.
Q: What is the maximum operating altitude for a solar inverter?
The maximum operating altitude for a solar inverter can vary depending on the specific model and manufacturer. However, most solar inverters are designed to operate effectively up to an altitude of around 2,000 meters or 6,500 feet above sea level. It is important to consult the manufacturer's specifications for the specific model to determine the exact maximum operating altitude.
Q: What is the role of a solar inverter in power factor correction?
The role of a solar inverter in power factor correction is to convert the direct current (DC) generated by the solar panels into alternating current (AC) that can be used by the electrical grid. In doing so, the solar inverter ensures that the AC power being fed into the grid has a power factor close to unity, which means it is efficient and does not cause any unnecessary strain on the electrical system. This helps to improve the overall power quality and efficiency of the solar energy system.
Q: How does a solar inverter handle variations in grid voltage?
A solar inverter handles variations in grid voltage by continuously monitoring the grid voltage and adjusting its own output voltage accordingly. It uses advanced control algorithms to maintain a stable and consistent output voltage despite fluctuations in the grid voltage. This ensures that the solar power generated is synchronized with the grid and can be seamlessly fed into the electrical system.
Q: How does a solar inverter handle frequency variations?
A solar inverter handles frequency variations by continuously monitoring the frequency of the grid and adjusting its output accordingly. It uses advanced electronics and control algorithms to synchronize its output with the grid frequency, ensuring a stable supply of electricity.
Q: What is the maximum AC current output of a solar inverter?
The maximum AC current output of a solar inverter depends on its power rating or capacity. Typically, solar inverters have a maximum AC current output ranging from 5 to 50 amps, although larger commercial or utility-scale inverters can have much higher current outputs.
Q: How does a solar inverter handle sudden changes in solar irradiance?
A solar inverter handles sudden changes in solar irradiance by continuously monitoring the amount of solar energy being generated. When it detects a sudden change in solar irradiance, the inverter adjusts its internal settings accordingly to maintain a stable output voltage and frequency. This allows it to effectively handle fluctuations in solar power input and ensure a consistent and reliable flow of electricity to the connected loads or the grid.
Q: What are the common issues and troubleshooting steps for a solar inverter?
Solar inverters can encounter various problems, such as failure to turn on, lack of power output, insufficient power output, intermittent power output, or error messages displayed on the inverter. Below are some steps you can take to troubleshoot these issues: 1. Verify the power supply: Ensure that the inverter is properly connected to the power source and that there are no electrical supply problems. Check the circuit breaker or fuse box to ensure it has not been tripped. 2. Inspect the wiring: Examine the wiring connections to ensure they are secure and undamaged. Loose or disconnected wires can cause power issues. If any damage is found, consider seeking the assistance of a professional electrician for repair or replacement. 3. Clean the solar panels: Dust, debris, or shading on the solar panels can reduce power output. Use a soft cloth or hose to clean the panels. If nearby trees or structures cast shade on the panels, consider trimming or removing them if feasible. 4. Check for error messages: If the inverter displays an error message, consult the user manual or manufacturer's website for the error code's meaning and recommended troubleshooting steps. If necessary, contact the manufacturer's customer support for further guidance. 5. Monitor weather conditions: Solar inverters may generate less power during cloudy or overcast days. However, if power output consistently remains low even in ideal weather conditions, there may be an issue with the inverter itself. 6. Reset the inverter: Some inverters offer a reset button or option. Attempt to reset the inverter to its factory settings, but bear in mind that this may erase any customized settings or configurations. 7. Update the firmware: Check if there are any firmware updates available for your specific inverter model. Updating the firmware can sometimes resolve issues and enhance performance. 8. Seek professional consultation: If the above troubleshooting steps do not resolve the issue, it is advisable to contact a professional solar installer or electrician. They possess the expertise and equipment required to diagnose and address more complex problems with solar inverters. Always prioritize safety when troubleshooting electrical equipment. If you are uncertain or uncomfortable with any troubleshooting steps, it is best to seek professional assistance to prevent potential hazards.
Q: What is the role of galvanic isolation in a solar inverter?
The role of galvanic isolation in a solar inverter is to provide electrical safety by separating the input and output circuits, preventing any direct electrical connection between them. This isolation helps protect the solar panels, the inverter, and the connected grid from potential electrical faults, such as ground faults or voltage surges. It also reduces the risk of electric shock and improves the overall performance and reliability of the solar inverter system.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords