• 36 Volt Solar Inverter String Grid-Tied PV Inverter KSG-200UH/ KSG-250UH System 1
  • 36 Volt Solar Inverter String Grid-Tied PV Inverter KSG-200UH/ KSG-250UH System 2
  • 36 Volt Solar Inverter String Grid-Tied PV Inverter KSG-200UH/ KSG-250UH System 3
  • 36 Volt Solar Inverter String Grid-Tied PV Inverter KSG-200UH/ KSG-250UH System 4
  • 36 Volt Solar Inverter String Grid-Tied PV Inverter KSG-200UH/ KSG-250UH System 5
36 Volt Solar Inverter String Grid-Tied PV Inverter KSG-200UH/ KSG-250UH

36 Volt Solar Inverter String Grid-Tied PV Inverter KSG-200UH/ KSG-250UH

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
50 pc
Supply Capability:
15000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Output Power:
200KW/250KW
Inveter Efficiency:
98.52%-99.01%
Output Voltage(V):
800
Input Voltage(V):
1080
Output Current(A):
126.3A/162.4A
Output Frequency:
50/60Hz±5Hz

Product Description:

1500Vdc, 800Vac 12 MPP Tracker,  24 PV Strings Input

Smart I/V Curve Function DC and AC Type II SPD

Optional AFCI Function Optional Night SVG Function

PLC communication Max. DC/AC ratio >1.5

Technical Specifications:


FAQ:

Q:How the output voltage of the PV inverter and the grid-connected voltage are determined

Inverter is the DC power (battery, battery) into alternating current (usually 220V, 50Hz sine wave). It consists of inverter bridge, control logic and filter circuit. Widely used in air conditioning, home theater, electric wheel, power tools, sewing machines, DVD, VCD, computer, TV, washing machine, range hood, refrigerator, video recorders, massage, fan, lighting and so on. In foreign countries

Q:Installation and maintenance of photovoltaic grid - connected inverter

only when the local power sector permission by the professional and technical personnel to complete all the electrical connection before the inverter can be connected.

Q:What is the difference between a PV grid-connected inverter and an off-grid inverter?

Off-grid inverter is equivalent to their own to establish an independent small power grid, mainly to control their own voltage, is a voltage source.

Q:After the PV inverter, how to achieve the same period before the network?

Solar panel simulator: with MPPT function, simulated morning, noon, afternoon, evening, rainy weather, solar panels produced under different conditions in different voltages.

Q:Is the PV inverter a current source or a voltage source?

According to the waveform modulation method can be divided into square wave inverter, stepped wave inverter, sine wave inverter and modular three-phase inverter.

Q:Photovoltaic grid-connected inverter without DC emc how will happen

Solar photovoltaic power generation technology is the use of solar cells, the photovoltaic effect of semiconductor materials, solar radiation can be directly converted into a new type of power generation system, solar energy is a radiant energy, solar power means --- to direct conversion of sunlight Into electricity,

Q:What is the difference between low voltage grid connection and medium voltage grid connection?

For photovoltaic power plants when the power system accidents or disturbances caused by photovoltaic power plant grid voltage drop, in a certain voltage drop range and time interval, the photovoltaic power plant can ensure that non-off-line continuous operation.

Q:Is the grid side of the grid and the inverter?

The grid load side of the grid is the grid. The inverter is an important part of the PV grid-connected system and can not be regarded as an external load. Photovoltaic power generation system is included in both grid and off-grid.

Q:PV grid-connected inverter and independent inverter in the control of what is the difference

The independent inverter in the output voltage phase amplitude of the frequency control is initially set good. Independent inverter, you should refer to off-grid inverter, do not need to consider the grid situation.


Product Images:


Production Process Photos:




Q: What are the indicators of a faulty solar inverter?
Some indicators of a faulty solar inverter may include a complete loss of power generation from the solar panels, flickering or inconsistent power output, unusual noises coming from the inverter, error messages or warning lights displayed on the inverter's screen, and a noticeable decrease in the overall efficiency of the solar system.
Q: How does a solar inverter impact the payback period of a solar system?
A solar inverter plays a crucial role in converting the direct current (DC) electricity generated by solar panels into usable alternating current (AC) electricity for household or grid consumption. The efficiency and performance of the solar inverter directly impact the overall energy production of the solar system. A higher quality and more efficient solar inverter can maximize the electricity generation, reducing the payback period of the solar system. Conversely, a low-quality or inefficient solar inverter may result in lower energy output, potentially extending the payback period of the solar system.
Q: What is the role of a surge protector in a solar inverter?
The role of a surge protector in a solar inverter is to protect the inverter and other connected devices from power surges or voltage spikes that can occur in the electrical system. It helps to regulate and stabilize the incoming electricity, preventing damage to the inverter and ensuring the smooth and efficient operation of the solar power system.
Q: How efficient are solar inverters?
Solar inverters are highly efficient, with most modern models achieving efficiency levels above 95%. This means that they can convert a large majority of the direct current (DC) electricity generated by solar panels into alternating current (AC) electricity for use in homes or businesses. The high efficiency of solar inverters helps maximize the overall energy output and financial benefits of solar power systems.
Q: Can a solar inverter be used with solar-powered desalination systems?
Yes, a solar inverter can be used with solar-powered desalination systems. A solar inverter is essential in converting the direct current (DC) power generated by solar panels into alternating current (AC) power that can be used to operate the desalination system. This allows for the efficient utilization of solar energy for powering the desalination process.
Q: After the PV inverter, how to achieve the same period before the network?
Grid simulator: analog power grid, normal and abnormal conditions, overvoltage, undervoltage, over frequency, under frequency, sudden power failure, etc.
Q: How do you calculate the power output of a solar inverter?
To calculate the power output of a solar inverter, you need to multiply the input voltage by the input current. This will give you the input power. Then, multiply the efficiency of the inverter by the input power to get the output power.
Q: How does a solar inverter handle reactive power compensation?
A solar inverter handles reactive power compensation by utilizing reactive power control techniques. It can dynamically regulate the amount of reactive power injected into or absorbed from the electrical grid. This helps maintain the power factor at the desired level, improving system efficiency and reducing grid instability caused by reactive power fluctuations.
Q: How does a solar inverter handle voltage dips or surges in the grid?
A solar inverter handles voltage dips or surges in the grid by continuously monitoring the grid voltage. When a voltage dip occurs, the inverter adjusts its output voltage accordingly to maintain a stable power supply. In case of a voltage surge, the inverter's protective mechanisms activate to prevent any damage to the system. Overall, the solar inverter plays a crucial role in regulating and stabilizing the voltage from the grid to ensure efficient and safe operation of the solar power system.
Q: What are the key factors affecting the efficiency of a solar inverter?
The key factors affecting the efficiency of a solar inverter include the quality and design of the inverter itself, the type and condition of the solar panels being used, the temperature and shading conditions at the installation site, and the overall system design and configuration. Additionally, factors such as the efficiency of the DC to AC conversion process, the presence of any power losses or inefficiencies in the wiring and connections, and the overall system maintenance and monitoring practices can also impact the efficiency of a solar inverter.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords