• Tata Solar Inverter String Grid-Tied PV Inverter Blue-G 3000D / 3600D / 4000D / 4200D / 4600D / 5000D / 6000D System 1
  • Tata Solar Inverter String Grid-Tied PV Inverter Blue-G 3000D / 3600D / 4000D / 4200D / 4600D / 5000D / 6000D System 2
  • Tata Solar Inverter String Grid-Tied PV Inverter Blue-G 3000D / 3600D / 4000D / 4200D / 4600D / 5000D / 6000D System 3
  • Tata Solar Inverter String Grid-Tied PV Inverter Blue-G 3000D / 3600D / 4000D / 4200D / 4600D / 5000D / 6000D System 4
  • Tata Solar Inverter String Grid-Tied PV Inverter Blue-G 3000D / 3600D / 4000D / 4200D / 4600D / 5000D / 6000D System 5
Tata Solar Inverter String Grid-Tied PV Inverter Blue-G 3000D / 3600D / 4000D / 4200D / 4600D / 5000D / 6000D

Tata Solar Inverter String Grid-Tied PV Inverter Blue-G 3000D / 3600D / 4000D / 4200D / 4600D / 5000D / 6000D

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
50 pc
Supply Capability:
15000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Output Power:
3000W/3600W/4000W/4200W/4600W/5000W/6000W
Inveter Efficiency:
97.70%-98.30%
Output Voltage(V):
230
Input Voltage(V):
600
Output Current(A):
14.4A-26A
Output Frequency:
50Hz / 60Hz±5Hz



KSTAR BluE Power Your Green Life

Product Description:

Max. PV voltage up to 600V DC/AC ratio up to 1.5

Type II DC SPD/Type III AC SPD IP65 protection

High efficiency up to 98.3% Smaller and lighter

Compatible for big capacity PV panel WiFi / 4G Plug optional

One Stop Solution Compatible with any type of Demand 

Our BluE series covers single phase 1 to 6kw, three phase  3-25kw and up to 20kwh Energy Storage System. This range  is predominantly designed for modern house and small  commericial energy demands. 

One App to monitor your power flow for different systems; 

One Call for pre-sales training & after-sales service;


Technical Specifications:

MODELBluE-G 3000DBluE-G 3600DBluE-G 4000DBluE-G 4200DBluE-G 4600DBluE-G 5000DBluE-G 6000D
Input(DC)
Max. DC Voltage600Vdc600Vdc600Vdc600Vdc600Vdc600Vdc600Vdc
Nominal Voltage380Vdc380Vdc380Vdc380Vdc380Vdc380Vdc380Vdc
Start Voltage100V100V100V100V100V100V100V
MPPT Voltage Range80V-560V80V-560V80V-560V80V-560V80V-560V80V-560V80V-560V
Number of MPP Tracker2222222
Strings Per MPP Tracker1111111
Max. Input Current Per MPPT15A15A15A15A15A15A15A
Max. short-circuit Current Per MPPT18A18A18A18A18A18A18A
Output(AC)
Nominal AC Output Power3000W3600W4000W4200W4600W4600W4600W
Max. AC Apparent Power3000VA3960VA4400VA4620VA5060VA5500VA6000VA
Nominal AC Voltage230V L-N230V L-N230V L-N230V L-N230V L-N230V L-N230V L-N
AC Grid Frequency Range50Hz / 60Hz±5Hz50Hz / 60Hz±5Hz50Hz / 60Hz±5Hz50Hz / 60Hz±5Hz50Hz / 60Hz±5Hz50Hz / 60Hz±5Hz50Hz / 60Hz±5Hz
Max. Output Current 14.4A17A19A20A22A24A26A
Power Factor (cosφ)0.8 leading to 0.8 lagging
THDi<3%< td="">
Efficiency
Max. Efficiency98.10%98.10%98.30%98.30%98.30%98.30%98.30%
Euro Efficiency97.70%97.70%97.90%97.90%97.90%97.90%97.90%
Protection devices
DC switchYesYesYesYesYesYesYes
Anti-islanding ProtectionYesYesYesYesYesYesYes
Output Over CurrentYesYesYesYesYesYesYes
DC Reverse Polarity ProtectionYesYesYesYesYesYesYes
String Fault DetectionYesYesYesYesYesYesYes
Surge ProtectionDC Type III;AC Type III
Insulation DetectionYesYesYesYesYesYesYes
AC Short Circuit ProtectionYesYesYesYesYesYesYes
General Specifications
Dimensions W x H x D 380*380*150mm
Weight10kg10kg11kg11kg11kg11kg11kg
Operating Temperature Range–25℃~+60℃
Cooling TypeNatural
Max. Operation Altitude≤4000m
Max. Operation Humidity0-100%
AC Output Terminal TypeQuick Connector
IP ClassIP65
TopologyTransformer-less
Communication InterfaceRS485/WIFI/4G
DisplayLCD
Certification & StandardEN/IEC62109-1/2;IEC/EN61000-6-2;IEC/EN61000-6-4;IEC61683;IEC60068;IEC60529;IEC62116;
IEC61727;EN50549-1;AS 4777.2;NRS 097;VDE-AR-N-4105;VDE 0126-1-1;CEI0-21;G98;G99;C10/C11;TED749;
UNE217001;UNE217002;NB/T32004-2018;GB/T19964-2012;INMETRO

Q:How the output voltage of the PV inverter and the grid-connected voltage are determined

Inverter is the DC power (battery, battery) into alternating current (usually 220V, 50Hz sine wave). It consists of inverter bridge, control logic and filter circuit. Widely used in air conditioning, home theater, electric wheel, power tools, sewing machines, DVD, VCD, computer, TV, washing machine, range hood, refrigerator, video recorders, massage, fan, lighting and so on. In foreign countries

Q:Installation and maintenance of photovoltaic grid - connected inverter

only when the local power sector permission by the professional and technical personnel to complete all the electrical connection before the inverter can be connected.

Q:What is the difference between a PV grid-connected inverter and an off-grid inverter?

Off-grid inverter is equivalent to their own to establish an independent small power grid, mainly to control their own voltage, is a voltage source.

Q:After the PV inverter, how to achieve the same period before the network?

Solar panel simulator: with MPPT function, simulated morning, noon, afternoon, evening, rainy weather, solar panels produced under different conditions in different voltages.

Q:Is the PV inverter a current source or a voltage source?

According to the waveform modulation method can be divided into square wave inverter, stepped wave inverter, sine wave inverter and modular three-phase inverter.

Q:Photovoltaic grid-connected inverter without DC emc how will happen

Solar photovoltaic power generation technology is the use of solar cells, the photovoltaic effect of semiconductor materials, solar radiation can be directly converted into a new type of power generation system, solar energy is a radiant energy, solar power means --- to direct conversion of sunlight Into electricity,

Q:What is the difference between low voltage grid connection and medium voltage grid connection?

For photovoltaic power plants when the power system accidents or disturbances caused by photovoltaic power plant grid voltage drop, in a certain voltage drop range and time interval, the photovoltaic power plant can ensure that non-off-line continuous operation.

Q:Is the grid side of the grid and the inverter?

The grid load side of the grid is the grid. The inverter is an important part of the PV grid-connected system and can not be regarded as an external load. Photovoltaic power generation system is included in both grid and off-grid.

Q:PV grid-connected inverter and independent inverter in the control of what is the difference

The independent inverter in the output voltage phase amplitude of the frequency control is initially set good. Independent inverter, you should refer to off-grid inverter, do not need to consider the grid situation.


           





Q: Can a solar inverter be used with a solar-powered lighting system?
Yes, a solar inverter can be used with a solar-powered lighting system. The solar inverter is responsible for converting the direct current (DC) generated by the solar panels into alternating current (AC) that can be used to power the lighting system. It ensures efficient energy conversion and ensures compatibility between the solar panels and lighting system.
Q: Can a solar inverter be used for both single-phase and three-phase applications?
No, a solar inverter cannot be used for both single-phase and three-phase applications. The design and functionality of a solar inverter are specific to either single-phase or three-phase systems.
Q: Can a solar inverter be used in a solar-powered irrigation system?
Yes, a solar inverter can be used in a solar-powered irrigation system. A solar inverter is responsible for converting the direct current (DC) produced by solar panels into alternating current (AC), which is necessary for powering electrical devices such as pumps and motors in an irrigation system. By connecting the solar panels to a solar inverter, the energy generated by the sun can be efficiently utilized to operate the irrigation system, making it a sustainable and cost-effective solution for agricultural purposes.
Q: What is the role of a power monitoring feature in a solar inverter?
The role of a power monitoring feature in a solar inverter is to constantly monitor and measure the amount of power being generated by the solar panels. This feature allows users to track the performance of their solar system, detect any issues or malfunctions, and optimize the energy output for maximum efficiency. It provides real-time data on the power production, enabling users to make informed decisions regarding energy usage and grid integration.
Q: Does a solar inverter require a separate grounding system?
Typically, a solar inverter requires its own grounding system. This is because the solar panels produce DC electricity, which needs to be converted to AC electricity by the inverter. The AC electricity is then either sent to the electrical grid or used within the building. Grounding is crucial for safety and proper functioning. In a solar power system, the grounding system provides a safe path for electrical current in case of faults like short circuits or lightning strikes. To prevent electrical shock hazards and comply with safety standards, a separate grounding system for the solar inverter is necessary. It safeguards the equipment, the building, and the people using or working on the system. The specific grounding requirements for a solar inverter may vary depending on local electrical codes and regulations. It is important to seek guidance from a qualified electrician or solar installer to ensure that the grounding system is designed and installed correctly for optimal safety and performance.
Q: Can a solar inverter be used with a solar water pumping system?
Yes, a solar inverter can be used with a solar water pumping system.
Q: How does a solar inverter handle shading or partial obstruction of solar panels?
A solar inverter is equipped with a technology called Maximum Power Point Tracking (MPPT) which allows it to handle shading or partial obstruction of solar panels. MPPT enables the inverter to constantly monitor the output of each individual solar panel and adjust the system's voltage and current accordingly. By doing so, the inverter ensures that the shaded or partially obstructed panels do not significantly affect the overall performance of the solar array. This way, it optimizes the energy production of the unshaded panels while minimizing the impact of shading on the system's efficiency.
Q: Can a solar inverter be used in mobile applications?
Yes, a solar inverter can be used in mobile applications. There are specifically designed solar inverters available that are compact and portable, making them suitable for use in mobile applications such as RVs, boats, and other vehicles. These inverters can convert the DC power generated by solar panels into AC power to run various devices and appliances on the go.
Q: Can a solar inverter be used for commercial applications?
Yes, a solar inverter can definitely be used for commercial applications. In fact, solar inverters are commonly utilized in commercial settings to convert the direct current (DC) electricity generated by solar panels into usable alternating current (AC) electricity that can power various commercial appliances and equipment.
Q: Can a solar inverter be used with a solar-powered electric fence system?
Yes, a solar inverter can be used with a solar-powered electric fence system. The solar inverter will convert the direct current (DC) power generated by the solar panels into alternating current (AC) power, which can then be used to power the electric fence system. This ensures that the fence receives a constant and reliable power supply from the solar panels.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords