• Stainless Deformed Steel Rebars with High Quality System 1
  • Stainless Deformed Steel Rebars with High Quality System 2
  • Stainless Deformed Steel Rebars with High Quality System 3
  • Stainless Deformed Steel Rebars with High Quality System 4
  • Stainless Deformed Steel Rebars with High Quality System 5
Stainless Deformed Steel Rebars with High Quality

Stainless Deformed Steel Rebars with High Quality

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
5000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 Product Description:

OKorder is offering Stainless Deformed Steel Rebars with High Quality at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Stainless Deformed Steel Rebars with High Quality are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

 

Product Advantages:

OKorder's Stainless Deformed Steel Rebars with High Quality are durable, strong, and resist corrosion.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Corrosion resistance

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Specifications of Deformed Steel Rebars with High Quality: 

Standard

GB

UK

USA

HRB335  HRB400  HRB500

G460B, B500A, B500B,B500C

GR40, GR60

Diameter

6mm,8mm,10mm,12mm,14mm,16mm,18mm,20mm,

22mm,25mm,28mm,32mm,36mm,40mm,50mm

Length

6M, 9M,12M or as required

Packing

Export standard packing: wrapped by wire rod in bundles

Each bundle weight

2-3MT, or as required

Trade terms

FOB, CFR, CIF

Payment terms

TT payment in advance or Irrevocable LC at sight.

Delivery Detail

within 45 days after received advanced payment or LC.

Brand name

DRAGON

Theoretical weight and section area of each diameter as below for your information:

Diameter(mm)

Section area (mm²)

Mass(kg/m)

Weight of 12m (kg)

Pcs/ton

6

28.27

0.222

2.664

375.38

8

50.27

0.395

4.74

210.97

10

78.54

0.617

7.404

135.06

12

113.1

0.888

10.656

93.84

14

153.9

1.21

14.52

68.87

16

201.1

1.58

18.96

52.74

18

254.5

2.00

24

41.67

20

314.2

2.47

29.64

33.74

22

380.1

2.98

35.76

27.96

25

490.9

3.85

46.2

21.65

28

615.8

4.83

57.96

17.25

32

804.2

6.31

75.72

13.21

36

1018

7.99

98.88

10.43

40

1257

9.87

118.44

8.44

50

1964

15.42

185.04

5.40

 Chemical Composition: (Please kindly find our chemistry of our material based on JIS as below for your information)

JISG3112   SD390

Chemical  Composition

C

Mn

Si

S

P

0.22

1.38

0.4

0.014

0.022

Physical capability

Yield Strength(N/cm²)

Tensile Strength(N/cm²)

Elongation (%)

620

≥400

21

 

The production process of Steel Rebar

1-Waling beam furnace 

2-Roughing rolling group 

 3-Intermediate rolling train

4-Finishing rolling group 

5-Water-cooling device 

6-Walking beam cooler

7-Finishing equipment(including the cold scale shear,short feet collection system,

     automatic counting device,bundling machine, collect bench)

 

Usage and Applications of Deformed Steel Rebars with High Quality:

Deformed bar is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy  and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger..

 

Packaging & Delivery of Deformed Steel Rebars with High Quality:

Packaging Detail: products are packed in bundle and then shipped by container or bulk vessel, deformed bar is usually naked strapping delivery, when storing, please pay attention to moisture proof. The performance of rust will produce adverse effect.

Price: Keep lower operating costs so as to offer competitive price for our clients

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.

Stainless Deformed Steel Rebars with High Quality

 

Stainless Deformed Steel Rebars with High Quality

Q:How are steel rebars connected to each other?
Steel rebars are typically connected to each other using various methods such as overlapping, welding, or using mechanical connectors like couplers or threaded bars.
Q:What are the guidelines for the proper anchoring of steel rebars in slabs?
The guidelines for proper anchoring of steel rebars in slabs typically include ensuring adequate lap length, proper spacing, and adequate embedment depth. The lap length refers to the minimum length of overlap between adjacent rebars to ensure adequate bond strength. Proper spacing is important to ensure even load distribution and prevent cracking. Embedment depth refers to the depth at which the rebars are placed within the concrete to ensure sufficient anchorage and prevent pullout. Additionally, it is important to follow local building codes and consult structural engineering guidelines specific to the project to ensure proper anchoring of steel rebars in slabs.
Q:Are steel rebars suitable for use in sports stadium construction?
Yes, steel rebars are suitable for use in sports stadium construction. Steel rebars provide excellent strength and durability, making them ideal for reinforcing concrete structures, such as stadiums, that need to withstand heavy loads and impacts. They enhance the structural integrity of the stadium, ensuring its safety and long-term stability. Additionally, steel rebars offer flexibility in design and can be customized to meet specific construction requirements, making them a preferred choice in sports stadium construction.
Q:Can steel rebars be painted or coated?
Yes, steel rebars can be painted or coated. Painting or coating steel rebars helps to protect them from corrosion and extend their lifespan. It is a common practice in construction and reinforcement projects to apply paint or protective coatings on steel rebars to enhance their durability and resistance to environmental factors.
Q:How are steel rebars affected by chemical exposure?
Steel rebars are generally resistant to chemical exposure due to their high corrosion resistance properties. However, certain aggressive chemicals like acids or salts can cause corrosion and degradation of steel rebars over time, potentially compromising their structural integrity. Therefore, it is crucial to consider the specific chemical environment and implement appropriate protective measures such as coatings or inhibitors to prevent or minimize any potential damage.
Q:What are the guidelines for proper curing of concrete structures with steel rebars?
The guidelines for proper curing of concrete structures with steel rebars include ensuring that the concrete is adequately hydrated through moist curing methods such as sprinkling water or covering with wet burlap. It is crucial to maintain a consistent and controlled temperature and humidity environment during the curing process to prevent cracking and enhance the strength development of the concrete. Additionally, it is essential to avoid rapid drying and exposure to extreme temperature variations to avoid any potential damage to the steel rebars.
Q:What is the lifespan of steel rebars in a concrete structure?
The lifespan of steel rebars in a concrete structure can vary depending on several factors such as the quality of the steel, environmental conditions, and maintenance. However, in general, steel rebars are designed to provide long-term durability and can typically last for several decades or even more in a properly constructed and maintained concrete structure.
Q:Are steel rebars suitable for earthquake-resistant structures?
Yes, steel rebars are suitable for earthquake-resistant structures. Steel rebars, also known as reinforcing bars, are commonly used in construction to provide strength and reinforcement to concrete structures. In earthquake-prone regions, the use of steel rebars is crucial in enhancing the seismic performance of buildings. Steel rebars have excellent tensile strength, which makes them capable of withstanding the high forces and movements caused by seismic activity. During an earthquake, buildings experience lateral forces and vibrations that can cause structural damage or collapse. The presence of steel rebars within the concrete structure helps to distribute and dissipate these forces, minimizing the risk of failure and enhancing the overall stability. Furthermore, steel rebars can be designed and placed strategically within the structure to improve its ductility. Ductility refers to the ability of a material or structure to deform without breaking. This is a crucial characteristic in earthquake-resistant structures, as it allows the building to absorb and dissipate energy during seismic events, reducing the risk of catastrophic failure. Steel rebars, when properly designed and placed, enhance the ductility of the structure and ensure it can withstand the dynamic loading from an earthquake. In addition to their mechanical properties, steel rebars are also highly resistant to corrosion, which is important for the long-term durability of earthquake-resistant structures. Corrosion can weaken the reinforcement and compromise the integrity of the building, making it more vulnerable to seismic activity. Steel rebars are typically coated with corrosion-resistant materials or embedded within a protective concrete cover to mitigate the risk of corrosion. It is important to note that while steel rebars play a significant role in enhancing the seismic performance of structures, they are just one component of a comprehensive earthquake-resistant design. Other factors, such as the overall structural system, foundation design, and adherence to building codes and regulations, also contribute to the overall earthquake resistance of a structure. Therefore, a holistic approach that considers all these factors is necessary to ensure the construction of earthquake-resistant buildings.
Q:How do steel rebars affect the overall construction cost of residential buildings?
Steel rebars can significantly impact the overall construction cost of residential buildings. While rebars add strength and durability to the structure, they also contribute to increased material and labor expenses. The cost of purchasing and installing rebars, along with associated construction techniques and reinforcing requirements, can raise the overall construction cost. However, considering the long-term benefits of reinforced structures, the investment in steel rebars is justified as it enhances the safety and longevity of residential buildings.
Q:How are steel rebars protected against corrosion in aggressive environments?
Various methods are utilized to protect steel rebars from corrosion in aggressive environments. One commonly employed approach involves the application of protective coatings. These coatings are administered to the surface of the rebars, establishing a barrier between the steel and the corrosive elements present in the surroundings. Examples of protective coatings comprise epoxy, zinc, and polyethylene coatings. Furthermore, cathodic protection is another means of safeguarding steel rebars. This technique involves linking the rebar to a sacrificial anode, often composed of a more reactive metal like zinc or magnesium. By doing so, the anode corrodes instead of the rebar, effectively sacrificing itself to shield the steel against corrosion. Additionally, corrosion inhibitors can be utilized to protect steel rebars. These inhibitors can be incorporated into the concrete mixture or directly applied to the rebars. Their function is to diminish the corrosive potential of the environment or form a protective film on the surface of the rebar, curtailing corrosion. Moreover, proper design and construction practices can play a pivotal role in preserving the integrity of steel rebars against corrosion. Sufficient concrete cover can aid in establishing a physical barrier between the rebar and the aggressive environment, thereby minimizing the steel's exposure to corrosive elements. Additionally, effective drainage systems and the use of non-corrosive aggregates contribute to the reduction of rebars' exposure to moisture and other corrosive substances. In summary, a combination of protective coatings, cathodic protection, corrosion inhibitors, and appropriate design and construction practices are employed to guarantee the protection of steel rebars in aggressive environments. These measures effectively prolong the lifespan of structures and uphold their structural integrity.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords