• Solar Power Inverter with MPPT Solar Charger 3000w 24V Pure Sine Wave System 1
  • Solar Power Inverter with MPPT Solar Charger 3000w 24V Pure Sine Wave System 2
  • Solar Power Inverter with MPPT Solar Charger 3000w 24V Pure Sine Wave System 3
  • Solar Power Inverter with MPPT Solar Charger 3000w 24V Pure Sine Wave System 4
  • Solar Power Inverter with MPPT Solar Charger 3000w 24V Pure Sine Wave System 5
Solar Power Inverter with MPPT Solar Charger 3000w 24V Pure Sine Wave

Solar Power Inverter with MPPT Solar Charger 3000w 24V Pure Sine Wave

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
2 pc
Supply Capability:
3000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Performance Characteristics

·         1. Suitable for all electrical equipments

·         2. Large LCD display for more detailed content

·         3. CPU controlled; fast transfer time

·         4. Intelligent battery management, prolonging the service life of the battery

·         5. Complete protection function, high reliability

·         6. Can provide high current charge

·         7. Can match different types of batteries

·         8. Disassembled LCD box which can make the operation in a distance of 15 meters

 

Product introduction 

EP series is sine wave low frequency inverter, which is specifically designed for home appliances. It is equipped with a big LCD screen so all information is displayed in detail, which makes it more convenient to use. Charging current of the inverter is adjustable from 5A to 45A and you can also select different charging voltage to charge different types of batteries so batteries are under great protection.


Our Service

Samples

Samples are Available for Testing and Market Test.

 

Warranty 

We provides warranty against defects in materials and workmanship for its Uninterruptible power supply, Power inverter/chargers including inverter12v 24v 48V, Solar charge controllers (“Product”).

 

 OEM Service

OEM service  is strictly based on the ISO9001 ISO14001 quality assurance system. The TOP involves the effective teamwork of departments from Sales, R&D, and Engineering, purchasing, production & QA, assuring a high quality product and prompt delivery for customers. The standardization of our quality system and the quality stability has earned us the trust of our customers for 12 years.

 

We have 10 sets of automatic insertion equipments, ICT PCB testing equipments, ATE automatic testing center and aging workshop for all products. Monthly output of UPS series exceeds 200,000. We have been offering OEM service for over 12 years.

 

Solar Power Inverter with MPPT Solar Charger 3000w 24V Pure Sine Wave

Solar Power Inverter with MPPT Solar Charger 3000w 24V Pure Sine Wave

Solar Power Inverter with MPPT Solar Charger 3000w 24V Pure Sine Wave

Solar Power Inverter with MPPT Solar Charger 3000w 24V Pure Sine Wave

Solar Power Inverter with MPPT Solar Charger 3000w 24V Pure Sine Wave



 

 

Specifications

 

Input


Input Voltage Range

182-265VAC

Output


Input Voltage Range

Batt.Mode:50±0.3Hz

Mode:48-54Hz(50Hz) or 58-64Hz,Same as AC

Output Wave Form

Sine Wave (Batt,mode)

Transfer Time

10ms(Typical)

 

FAQ:

Q: Do you have the CE, TUV, UL Certification?

A: We’ve already passed all the tests, and any certificate is available.

Q: Have you ever sold your products to companies in my country?

A: Of course, we have customers in all general PV markets, but I think we should expand our market share along with the market growth.

Q: When did your company set up?  You are a new company, how can I believe your quality?

A: We entered into Solar PV industry in 2005, now we have several plants in manufacturing of a-Si and c-Si panels, and our capacity is 220MW per year. Till now we have already passed all the tests by authorized laboratories, e.g. TUV, CE, UL.

 

 

Q: Can you help us install the module if we cooperate with you?

A: We haven’t entered into installation sector, but we have the plan in near future.

Q: How do you pack your products?

A: We have rich experience on how to pack the panels to make sure the safety on shipment when it arrives at the destination.

Q: Can you do OEM for us?

A: Yes, we can.

Q: Can we visit your factory?

A: Surely, I will arrange the trip basing on your business schedule.


Q:How do you calculate the efficiency of a solar inverter?
To calculate the efficiency of a solar inverter, you need to divide the output power by the input power and multiply it by 100. The formula is: Efficiency = (Output Power / Input Power) * 100.
Q:Can a solar inverter be used in regions with high humidity or moisture levels?
Yes, solar inverters can be used in regions with high humidity or moisture levels. However, it is important to ensure that the inverter is designed and rated for such conditions. The inverter should have adequate protection against moisture, such as being IP65 rated or higher, to prevent any damage or malfunctions due to humidity or moisture.
Q:How much maintenance is required for a solar inverter?
Solar inverters typically require minimal maintenance. Most modern inverters are designed to be reliable and durable, requiring little to no maintenance throughout their lifespan. However, occasional cleaning of the inverter's vents and ensuring proper ventilation can help optimize its performance. Additionally, monitoring the inverter's performance and checking for any error messages or unusual behavior can help identify and address any potential issues. Overall, the maintenance required for a solar inverter is generally minimal, making it a low-maintenance component of a solar system.
Q:Can a solar inverter be used in a solar-powered desalination system?
Yes, a solar inverter can be used in a solar-powered desalination system. A solar inverter is responsible for converting the direct current (DC) electricity produced by solar panels into alternating current (AC) electricity, which is required to power the desalination system. By utilizing a solar inverter, the solar energy generated can be efficiently utilized to operate the desalination process, making it a sustainable and environmentally friendly solution for producing fresh water from seawater.
Q:Are solar inverters weather-resistant?
Yes, solar inverters are designed to be weather-resistant. They are typically built with durable materials and sealed enclosures to protect them from various weather conditions such as rain, snow, and extreme temperatures. However, it is always recommended to consult the manufacturer's specifications and guidelines to ensure proper installation and maintenance for optimal performance and longevity.
Q:Can a solar inverter be used with different monitoring platforms?
Yes, a solar inverter can be used with different monitoring platforms as long as the monitoring platforms are compatible with the inverter's communication protocols and data formats.
Q:How does a solar inverter handle voltage flicker in the grid?
A solar inverter handles voltage flicker in the grid by continuously monitoring the grid voltage and adjusting its output accordingly. It uses various control algorithms to regulate the power output and stabilize the voltage, hence minimizing the impact of voltage flicker on the grid.
Q:How does a solar inverter handle voltage and frequency variations caused by switching operations?
Through its built-in control mechanisms and advanced technology, a solar inverter is specifically designed to handle voltage and frequency variations resulting from switching operations. When connected to the grid, the solar inverter actively monitors the grid's voltage and frequency, and adjusts its operation accordingly to ensure stability and safety. When voltage variations occur due to switching operations, a solar inverter typically employs a voltage control mechanism. This mechanism continuously monitors the grid's voltage level, and accordingly adjusts the inverter's output voltage to match the grid voltage. If the grid voltage exceeds or falls below a specific threshold, the inverter automatically compensates by adjusting its output voltage to maintain a stable level. Similarly, for frequency variations caused by switching operations, a solar inverter utilizes a frequency control mechanism. This mechanism constantly monitors the grid's frequency and adjusts the inverter's output frequency to match the grid's frequency. If the grid's frequency deviates from the standard, the inverter promptly responds by adjusting its output frequency to ensure synchronization with the grid. To achieve precise control, solar inverters often integrate advanced digital signal processing algorithms and sophisticated control systems. These algorithms and control systems analyze the voltage and frequency signals from the grid, and based on predefined parameters, swiftly make adjustments to the inverter's output. This ensures compatibility with the grid and promotes seamless integration. Ultimately, the primary objective of a solar inverter is to seamlessly integrate with the grid, providing a stable, reliable, and efficient power supply. By effectively managing voltage and frequency variations resulting from switching operations, the inverter plays a crucial role in maintaining the overall stability and resilience of the grid. This allows for optimal utilization of solar energy and contributes to a sustainable energy future.
Q:What are the main components of a solar inverter?
The main components of a solar inverter typically include the DC input, MPPT (Maximum Power Point Tracking) system, inverter circuit, transformer, and AC output.
Q:What is the difference between a grid-tied and off-grid solar inverter?
A grid-tied solar inverter is connected to the local utility grid and allows for the transfer of excess energy generated by the solar panels back to the grid. This type of inverter does not have the capability to store energy and requires a constant grid connection to function. On the other hand, an off-grid solar inverter is designed to be used in systems that operate independently from the utility grid. It is typically used in remote areas or locations where grid connection is not available. These inverters have the ability to store excess energy in batteries for later use when there is no solar generation.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords