• Best Home Solar Inverter Compatible Solar Modules Poly-Crystalline 235W 156*156 Module System 1
  • Best Home Solar Inverter Compatible Solar Modules Poly-Crystalline 235W 156*156 Module System 2
Best Home Solar Inverter Compatible Solar Modules Poly-Crystalline 235W 156*156 Module

Best Home Solar Inverter Compatible Solar Modules Poly-Crystalline 235W 156*156 Module

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
-
Supply Capability:
-

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

Solar Module Descriptions: 

Solar Power Modules (known as Photovoltaics - PV) can generate electricity for your home or business, either as part of a stand-alone solar power system, or for buildings already connected to the local electricity network.

PV systems use the most abundant energy source on the planet, solar radiation, to generate electricity. They are silent, consume no fuel and generate no pollution. They also contribute to the reduction of greenhouse gas emissions; a 2kW PV system on a house will prevent the emission of about 40 tonnes of CO2 during its projected 30 year lifetime. Furthermore, the use of PV will reduce your electricity bills and exposure to fluctuating and steadily rising electricity prices.

 

 

 

Electrical Characteristics 

Max-power                                 

(W)     

235

Max-Power Voltage            

(V)

29.80

Max-Power Current             

(A)

7.88

Open-Circuit Voltage             

(V)

37

Short-Circuit Current            

 (A)

8.39

 

Mechanical Characteristics

Cable type, Diameter and Length

4mm2, TUV certified, 1000mm

Type of Connector

Compatible with MC4 plug

Arrangement of cells

6*10

Cell Size

156*156

Dimension

1580*1069*45

Weight

19.5Kg

Glass, Type and Thickness

High Transmission, Low Iron, Tempered Glass 3.2mm

 

Features 

  • Guaranteed positive tolerance 0/+5w ensures power output reliability

  • Strong aluminum frames module can bear snow loads up to 5400Pa and wind loads up to 2400Pa.

  • Excellent performance under low light environments (mornings evenings and cloudy days)

  • 12 years for product defects in materials and workmanship and 25 years for 80% of warranted minimum power.

  • Certifications and standards: IEC 61215.

  • Manufactured according to International Quality and Environment Management System (ISO9001, ISO14100).

 

FAQ

 

Q: How long is the warranty period for the solar modules?

15 years 90% of its nominal power rating.

25 years 80% of its nominal power rating

Q: When do I need a charge controller and why?

The safest way to figure out if you need a charge controller is to take Battery Amp Hour Capacity and divide this by the Solar Panel max. power amp rating. If the quotient is above 200, you don't need a controller. If the number is less than 200 than you need a controller.

For example if you have a 100 amp hour battery and a 10 watt panel, you take 100 and divide it by .6 (600mA) and you get 166.6. Since this is less than 200 you need a charge controller. If you have a five-watt panel in the above example you take 100 divided by .3 (300mA) and you come up with 333.3. Since this is larger than 200 you do not need a charge controller. However you still need a blocking diode, to prevent the battery from discharging to the panel at night. So as a general rule of thumb you don't need a charge controller unless you have more than five watts of solar for every 100-amp hours of battery capacity.

 

Q: Can a solar inverter be used with a solar-powered air purification system?
Yes, a solar inverter can be used with a solar-powered air purification system. A solar inverter is responsible for converting the direct current (DC) generated by a solar panel into usable alternating current (AC) that can power electrical appliances. In the case of a solar-powered air purification system, the solar inverter can convert the DC electricity produced by the solar panels into AC power needed to operate the air purification system, allowing it to function efficiently with solar energy.
Q: What is the role of a display interface in a solar inverter?
The role of a display interface in a solar inverter is to provide real-time information and control options to the user. It allows them to monitor the performance of the solar inverter, such as power output, energy production, and system status. The display interface also provides access to various settings and configuration options, allowing the user to optimize the performance of the solar inverter based on their specific requirements.
Q: How is the output voltage of a solar inverter regulated?
The output voltage of a solar inverter is regulated through a combination of voltage control algorithms and power electronics components. These algorithms continuously monitor the voltage level and adjust the inverter's operation accordingly to maintain a stable output voltage. Additionally, power electronics components like DC-DC converters and inverters are used to convert the variable DC voltage generated by the solar panels into a stable AC voltage output that matches the grid requirements.
Q: How does a grid-tied solar inverter work?
A grid-tied solar inverter converts the direct current (DC) electricity generated by solar panels into alternating current (AC) electricity that can be fed into the electrical grid. It synchronizes the solar panel's electricity with the utility grid's electricity, allowing the excess power to be sent back to the grid or drawing power from the grid when the solar panels are not producing enough. The inverter also ensures the safety and reliability of the system by monitoring the grid's voltage and frequency, and disconnecting in case of grid failure to protect workers and prevent damage to the system.
Q: How do I choose the right solar inverter for my system?
When choosing the right solar inverter for your system, there are several factors to consider. Firstly, you need to assess the size and capacity of your solar panel system to ensure that the inverter can handle the expected power generation. Additionally, consider the type of inverter, such as string inverters, microinverters, or power optimizers, based on the specific needs and limitations of your system. It's also essential to check the inverter's efficiency, warranty, and reliability, as well as compatibility with other system components like batteries or monitoring systems. Lastly, consider your budget and choose an inverter that offers a balance between quality and cost-effectiveness. Consulting with a professional solar installer can provide valuable insights and help you make an informed decision.
Q: How does a solar inverter handle reactive power compensation?
A solar inverter handles reactive power compensation by utilizing reactive power control techniques. It can dynamically regulate the amount of reactive power injected into or absorbed from the electrical grid. This helps maintain the power factor at the desired level, improving system efficiency and reducing grid instability caused by reactive power fluctuations.
Q: Can a solar inverter be used with different types of batteries?
Yes, a solar inverter can be used with different types of batteries as long as the voltage and current ratings of the batteries are compatible with the inverter's specifications. However, it is important to ensure that the inverter is programmed or configured correctly to work with the specific battery chemistry and charging requirements to optimize performance and prevent any potential damage.
Q: How does a solar inverter handle voltage unbalance?
A solar inverter handles voltage unbalance by continuously monitoring the phase voltages of the grid. If a voltage unbalance occurs, the inverter adjusts its output voltage and frequency to maintain a balanced supply to the grid. This ensures that the solar inverter can efficiently convert the DC power generated from the solar panels into AC power that is synchronized with the grid, despite any voltage imbalances.
Q: Can a solar inverter be used in a solar water pumping system?
Yes, a solar inverter can be used in a solar water pumping system. The inverter is responsible for converting the direct current (DC) generated by the solar panels into alternating current (AC) required to power the water pump. This allows for efficient and reliable operation of the pumping system using solar energy.
Q: What is the role of a solar inverter in anti-islanding protection?
The role of a solar inverter in anti-islanding protection is to detect when there is a loss of utility power and to disconnect the solar system from the grid. This is important to prevent the system from continuing to generate power during a power outage, which could pose a safety risk to utility workers who may be working on the grid. The solar inverter ensures that the solar system is synchronized with the grid and only operates when there is a stable utility power supply, thus providing a reliable and safe connection to the grid.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords