• 3ph Solar Inverter Modified Sine Wave 3000W System 1
  • 3ph Solar Inverter Modified Sine Wave 3000W System 2
  • 3ph Solar Inverter Modified Sine Wave 3000W System 3
  • 3ph Solar Inverter Modified Sine Wave 3000W System 4
  • 3ph Solar Inverter Modified Sine Wave 3000W System 5
3ph Solar Inverter Modified Sine Wave 3000W

3ph Solar Inverter Modified Sine Wave 3000W

Ref Price:
$400.00 - 600.00 / unit get latest price
Loading Port:
China main port
Payment Terms:
TT or LC
Min Order Qty:
50 unit
Supply Capability:
1000 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

1. Structure of Solar Inverter, High quality Single Phase Modified Sine Wave 3000w Description

The inverter series is an electronic product that has been designed and built to take low DC woltage power from batteries and convert it to

 standard  AC power like the current you have at home.

The Inverter series is a DC-to-AC with auto line-to-battery transfer and intergrated charging system. Inverter series powers from ACpower

 and DC source, serving as an extended run UPS. When AC cable is connected to a wall socket, utility power goes to connected equipment

 and/or charges the battery set via charging system. In Inverter mode, the Inverter series automatically converts battery energy into AC power

for backing up  the connected devices.

 

2. Main Features of Solar Inverter, High quality Single Phase Modified Sine Wave 3000w    

•  Low voltage protection

•  Over voltage protection

•  Overload protection

•  Over temperature protection

•  Short circuit protection

 

3. Solar Inverter, High quality Single Phase Modified Sine Wave 3000w Images

 

4. Solar Inverter, High quality Single Phase Modified Sine Wave 3000w Specification

Model No.

DMD-3000W/24V/F/CA

Input Section

DC Input Voltage

24V

DC Operating Voltage

21-29V

DC Low-voltage Protection

18.5-20.5V

DC Low-voltage Alarm

19.5-21V

DC Over-voltage Protection

≥29V

Fuse

20A*2

Quiescent Current

≤0.5A

Output Section

Output Waveform

Modified Sine Wave

Output Voltage

220V±10%

Output Frequency

50Hz±1%

Power Rating

3000W

Continue Output Rating

3000W

Peak Power Rating Output

6000W

Transfer Efficiency

≥90 %

Overload Protection

3000W--3600W

Short-circuit Protection

Yes

Operating Temperature

-10°C--+50°C

Temperature Protection

+60°C--+70°C

Green LED Indicator

Green Light(Working),Flash(Overload Protection)

Red LED Indicator

Red Light(Error Protection)

Size

Size: 305 x 165 x 125mm

Weight

5.5kg 

Packing

Color box packing or skin packing

 

5. FAQ of Solar Inverter, High quality Single Phase Modified Sine Wave 3000w

Q1:Can we visit your factory?

    A1:Sure,welcome at any time,seeing is believing.

Q2:Which payment terms can you accept?

    A2:T/T,L/C,Moneygram,Paypal are available for us.

Q: Can a solar inverter be used in a net metering system?
Yes, a solar inverter can be used in a net metering system. In fact, a solar inverter is an essential component of a net metering system as it converts the direct current (DC) electricity generated by solar panels into alternating current (AC) electricity that can be used in homes and businesses. The excess electricity generated by the solar panels is fed back into the grid through the inverter, allowing for net metering and potentially earning credits or reducing electricity bills.
Q: How do you choose the right output voltage for a solar inverter?
When choosing the right output voltage for a solar inverter, it is crucial to consider the specific requirements of the electrical appliances or systems that will be powered by the inverter. The output voltage must match the voltage requirements of the devices to ensure compatibility and efficient operation. Additionally, the local electrical grid standards and regulations should be taken into account, as certain regions may have specific voltage requirements. It is advisable to consult with a professional or an electrician who can assess the specific needs and provide guidance in selecting the appropriate output voltage for the solar inverter.
Q: Can a solar inverter be used in areas with high temperature fluctuations?
Solar inverters can generally be used in areas that experience high temperature fluctuations. These inverters are designed to function within a wide temperature range, usually between -20°C to 50°C (-4°F to 122°F), depending on the model. They incorporate temperature protection mechanisms to guarantee their durability and functionality, even in the face of extreme temperature variations. However, it is essential to acknowledge that prolonged exposure to extreme temperatures at the upper or lower limits of their operating range may impact the inverter's performance and lifespan. Consequently, it is crucial to install them correctly and perform regular maintenance to ensure optimal performance in regions with significant temperature fluctuations.
Q: What happens to excess solar energy generated by the inverter?
Excess solar energy generated by the inverter can be either stored in batteries for later use or fed back into the electrical grid, depending on the setup of the solar power system.
Q: What is the maximum operating altitude for a solar inverter?
The maximum operating altitude for a solar inverter can vary depending on the specific model and manufacturer. However, most solar inverters are designed to operate effectively up to an altitude of around 2,000 meters or 6,500 feet above sea level. It is important to consult the manufacturer's specifications for the specific model to determine the exact maximum operating altitude.
Q: What is the impact of a solar inverter on the overall system cost?
The impact of a solar inverter on the overall system cost can be significant. A solar inverter is an essential component of a solar power system that converts the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power electrical devices or be fed back into the grid. The cost of a solar inverter can vary depending on its capacity, efficiency, and brand. Generally, more advanced and efficient inverters tend to be more expensive. However, investing in a high-quality inverter can result in long-term savings and improved system performance. One important consideration is the size of the solar power system. Inverters have capacity limits, and selecting an appropriately sized inverter is crucial to optimize energy production and system efficiency. Choosing an undersized inverter can limit the system's performance, while an oversized inverter may result in unnecessary additional costs. The quality and reliability of the inverter are also important factors. A well-built and reliable inverter can minimize maintenance and repair costs, ensuring a longer lifespan for the solar power system. Additionally, advanced features like monitoring capabilities and grid integration functionalities can enhance the overall system performance and provide valuable data for maintenance and troubleshooting, but they may also increase the overall system cost. Moreover, the efficiency of a solar inverter can impact the overall system cost. Higher efficiency inverters can convert a greater amount of DC power into usable AC power, resulting in increased energy production and potentially reducing the number of solar panels required. This can lead to cost savings in terms of panel purchase and installation. In conclusion, while the cost of a solar inverter is an important consideration in overall system cost, it is crucial to balance it with factors such as capacity, efficiency, reliability, and additional features. Investing in a high-quality inverter that is appropriately sized can result in long-term savings, improved system performance, and higher energy production, ultimately maximizing the value and benefits of a solar power system.
Q: Can a solar inverter be used in areas with high levels of lightning activity?
Yes, solar inverters can be used in areas with high levels of lightning activity. However, it is important to ensure that the solar inverter is properly grounded and installed with appropriate lightning protection measures to minimize the risk of damage caused by lightning strikes.
Q: What is the difference between a central inverter and a string inverter?
A central inverter is a type of inverter that is used in large-scale solar installations. It takes the direct current (DC) electricity generated by multiple solar panels and converts it into alternating current (AC) electricity that can be used to power homes or businesses. A central inverter is typically located in a central location, such as a utility room or basement. On the other hand, a string inverter is a type of inverter that is used in smaller-scale solar installations. It also converts DC electricity from multiple solar panels into AC electricity, but it does so at the string level. This means that each string of solar panels has its own dedicated inverter. String inverters are usually installed near the solar panels themselves, which can make them more convenient for maintenance and troubleshooting. In summary, the main difference between a central inverter and a string inverter is the scale of the solar installation they are used in and their physical location. Central inverters are used in larger installations and are located centrally, while string inverters are used in smaller installations and are located near the solar panels.
Q: Can a solar inverter be used with solar-powered electric fences?
Yes, a solar inverter can be used with solar-powered electric fences. Solar inverters are commonly used to convert the direct current (DC) energy generated by solar panels into alternating current (AC) energy, which is suitable for powering electric fences. By connecting the solar panels to a solar inverter, the generated solar energy can be efficiently utilized to power the electric fence system.
Q: Can a solar inverter be used in mobile applications?
Yes, a solar inverter can be used in mobile applications. Mobile solar inverters are specifically designed to convert the direct current (DC) power generated by solar panels into alternating current (AC) power that can be used to charge mobile devices or power small appliances while on the go. These inverters are typically compact, lightweight, and have features like USB ports or built-in batteries to provide convenient and portable power solutions.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords