• Solar Inverter System Solar Charge Controller LCD 10A-60A System 1
  • Solar Inverter System Solar Charge Controller LCD 10A-60A System 2
  • Solar Inverter System Solar Charge Controller LCD 10A-60A System 3
  • Solar Inverter System Solar Charge Controller LCD 10A-60A System 4
Solar Inverter System Solar Charge Controller LCD 10A-60A

Solar Inverter System Solar Charge Controller LCD 10A-60A

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT or LC
Min Order Qty:
1 pc
Supply Capability:
1000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Solar Charge Controller LCD 10A-60A    

This is a highly intelligent charge controller with  (MPPT). The optimal and intelligent “MPPT + SOC” charge control is implemented. The power switching components consist of low-loss MOSFET type transistors that have a long operating life and guarantee high performance. The extremely low own consumption makes it especially suitable for solar home systems, solar street lamp system, advertising lighting, traffic management system, and other professional applications etc. With the reverse polarity protection, lightning protection, electronic fuse and automatic detection of faulty battery, the controller is robust, maintenance-free and user-friendly.

   

● Intelligent operation: the system will automatically start PV charging function without the manual operation.
● High efficiency MPPT function (optional): the system adopt maximum power point tracking technology, even if the battery using in the different condition, this MPPT controller could ensure the Maximum output power from the PV panels, and increase 20-30% electrical power using efficiency from solar panel. 
● Reliability: Adopt the Hybrid controller to realize “MPPT+SOC” double intelligent charge control, ensure the product stability and reliability.
● Intelligent charge control: With automatic battery temperature compensation, constant current and constant voltage integrated charge mode, improve the battery's charging efficiency and working life.
● Battery protection: automatically detect the battery working condition, when overdischarge, the system will be shut down automatically, avoid wasting the battery energy.
● High efficiency: Power loop adopts low-loss MOSFET type transistors in series, PWM Soft switching technology is applied to reduce switching loss, Synchronous rectification technology is applied to decrease voltage drop, increase the system's efficiency.
● Intelligent: Illumination recognition auto power on(optional): the system can be set to auto turn on the load when lack of sun, such as fog,storm,night. Auto turn on the load, it is a good assistant of transportation illumination.
● Protection: Overcharge protection/ Over-discharge protection / Battery Reverse Current Protection / Overloading Protection/ Short 
● Circuit Protection/ Reverse Polarity Connection Protection/ TVS lightning protection etc.
● LCD Display: to show the working mode of solar battery, seal-lead acid battery and load.
● Well Adaptability (optional): through the man-machine interface, charging current fine adjustment can be settable, suitable for Li-ion Battery, lead-acid battery and other storage system.
● Intelligent communication (optional): RS232 and dry connect
● Temperature compensation (optional): with external battery working temperature detective port, to adjust the charging voltage in time according to the battery working temperature

 

Model

F2448-10/M

F1224-20/M

F2448-20/M

F1224-30/M

F2448-30/M

F1224-40/M

F2448-40/M

F1224-50/M

F2448-50/M

F1224-60/M

F2448-60/M

System Voltage

 12V / 24V ;24V/ 48V

Rated Charging Current

10A

20A

30A

40A

50A

60A

Rated Load Current

10A

20A

30A

40A

50A

60A

PV Panels Configuration

(Suggestion)(Imp≤Rated Current)

≤10A

≤20A

≤30A

≤40A

≤50A

≤60A

Battery Capacity

38Ah~800Ah

Max. Efficiency

> 98%

Static Dissipative

< 0.5%(system rated current)

Solar Battery Port Input Voltage 

12V:0-24V;24V:0-48V;48V:0-95V

Rated Battery Voltage

12V / 24V  ;  24V / 48V

Buck Charge Voltage

14.6V / 29.2V±1%  ;  29.2V/58.4V±1%

Float Charge Voltage

14.4V / 28.8V±1%  ;  28.8V/57.6V±1%

Overcharge Protection

14.7V / 29.4V ±1%   ;  29.4V / 58.8V±1%

Charging Resume Voltage

13.2V /26.4V±1%  ;  26.4V / 52.8V±1%

Undervoltage Alarm

11.2V /22.4V±1%  ;  22.4V / 44.8V±1%

Overdischarge Protection

10.8 V / 21.6 ±0.3V  ;  21.6V / 43.2 ±0.4V

Overdischarge Resume Start Voltage

13.2 V / 26.4 ±0.3V  ;  26.4 V / 52.8 ±0.4V

discharge Circuit Voltage Drop

< 5 %(System rated voltage)

Overload, Short-Circuit Protection

125%(60S) / 150%(10S)/ short-circuit auto shut down; 

PV Reverse Polarity Connection Protection

YES

Display

LCD + LED 

Alarm Mode

sound(optional)/light alarm

Control Mode

Switch control / PWM

Working Temperature

c-20℃ ~ +45℃

Relative Humidity

0-95%(noncondensing)

Storage Temperature

-25℃ ~ +85℃

Altitude

1000m with rated power (increase 100m, reduce power 1%) Max.4000m

Storage Humidity

≤85%

Installation Method

hanging vertical installation

Packing Dimension WxDxH(mm)

164×168×55

164*168*100

Weight(kg)

0.85

2.05

Packing Weight(kg)

1.05


2.25

Package

8pcs/carton

·         Q. What is an UPS and What it is for ?

An uninterruptible power supply (UPS) is a device that allows your computer or telephone switch or critical equipement to keep running for at least a short time or longer time when the primary power source is lost. It also provides protection from power surges, spikes, brownouts, interference and other unwanted problems on the supported equipment.

·         Q. How long the UPS to run when power goes?

This can take 3 paths.
1.You can pick a UPS that is rated for pretty much the full VA you need so it will be running at 100% of capability and will thus last 'n' minutes.
2.You can pick a UPS that is rated at a much higher VA value than you really need so, for example, is running at 50% of capability and will thus last for longer than the UPS from option 1.
3You can use extra external battery packs to run for longer. If charging capability allows, the more and the bigger batteries you take with, the longer time UPS runs. 
or using a generator after about 6 hours, it will be more cost-effective, with a short runtime UPS to bridge the generator start-up gap.

Q: What are the different types of solar inverters?
There are several types of solar inverters, including string inverters, microinverters, and power optimizers.
Q: Can a solar inverter be used in conjunction with a smart home system?
Yes, a solar inverter can be used in conjunction with a smart home system. The smart home system can integrate with the solar inverter to monitor and control the energy production, consumption, and storage. This allows for better optimization of energy usage, remote monitoring, and automated control of various devices and appliances within the smart home.
Q: How does a solar inverter handle voltage unbalance in the grid?
A solar inverter handles voltage unbalance in the grid by employing its control algorithms to monitor and regulate the output voltage. When the solar inverter detects an unbalanced grid voltage, it adjusts the output voltage accordingly to maintain a balanced supply. This is typically achieved by injecting reactive power or adjusting the phase angle of the output voltage to synchronize it with the grid. By actively managing voltage unbalance, a solar inverter ensures stable and reliable power conversion in the presence of grid voltage fluctuations.
Q: How does a solar inverter handle frequency variations in the grid?
A solar inverter handles frequency variations in the grid through its built-in control mechanisms. It continuously monitors the frequency of the grid and adjusts its own output accordingly to match the grid frequency. This ensures that the solar inverter remains synchronized with the grid and allows for seamless power transfer between the two.
Q: What is the role of power ramp rate control in a solar inverter?
The role of power ramp rate control in a solar inverter is to ensure a smooth and controlled increase or decrease in power output from the solar panels. This control mechanism is important to prevent sudden changes in power generation that can lead to instability in the electrical grid. By gradually adjusting the power output, the solar inverter helps to maintain grid stability, avoid voltage and frequency fluctuations, and ensure a reliable and consistent energy supply.
Q: Can a solar inverter be used with solar-powered emergency backup systems?
Yes, a solar inverter can be used with solar-powered emergency backup systems. A solar inverter is an essential component in converting the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power appliances and devices. By connecting the solar inverter to a solar-powered emergency backup system, the excess solar energy can be stored in batteries or fed back into the grid, providing a reliable source of electricity during power outages or emergencies.
Q: Can a solar inverter be used with different AC voltages?
No, a solar inverter cannot be used with different AC voltages. It is designed to convert the DC electricity generated by solar panels into a specific AC voltage, typically matching the grid voltage in the area. Using a solar inverter with a different AC voltage can result in damage to the inverter and potential safety hazards.
Q: What is the role of a solar inverter in preventing islanding?
The role of a solar inverter in preventing islanding is to continuously monitor the electrical grid and quickly disconnect from it if it detects any abnormalities or disruptions. This prevents the solar inverter from operating in an isolated or "islanded" mode, which could pose safety risks to utility workers and damage electrical equipment. By promptly disconnecting from the grid during such events, the solar inverter helps maintain the stability and integrity of the overall electrical system.
Q: Can a solar inverter be connected to a home automation system?
Yes, a solar inverter can be connected to a home automation system. By integrating the solar inverter with the home automation system, homeowners can monitor and control their solar power production, track energy usage, and automate various energy-saving functions such as adjusting thermostat settings, turning off appliances, or scheduling energy-intensive tasks during peak solar production hours. This integration enhances the overall efficiency and convenience of managing solar energy within a smart home environment.
Q: Can a solar inverter be used in areas with unstable grid power?
Yes, a solar inverter can be used in areas with unstable grid power. In fact, solar inverters are often used in such areas to provide a stable and reliable power supply. The inverter's ability to convert solar energy into usable electricity allows it to function independently of the grid power, ensuring a continuous power supply even during grid outages or fluctuations.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords