• Selling all kinds of large diameter longitudinal submerged arc welded pipe System 1
  • Selling all kinds of large diameter longitudinal submerged arc welded pipe System 2
  • Selling all kinds of large diameter longitudinal submerged arc welded pipe System 3
Selling all kinds of large diameter longitudinal submerged arc welded pipe

Selling all kinds of large diameter longitudinal submerged arc welded pipe

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT or LC
Min Order Qty:
25 m.t.
Supply Capability:
6000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 Product Description:

 

1.Specification of LSAW Welded Steel Pipes:

 

1)Application: It is widely applied to line pipe in oil and sewage transportation , and it is used in Low pressure liquid and gassy transportation and it is also good Structure pipe in building and bridge field.

 

2)Standard:ASTM A53,ASTM A671 ,ASTM A672 .ASTM A252  API 5L (PSL-1,PSL-2) ,API 5L 2B ,2H,2W.DIN1626,DIN17175,DIN1629.JISG 3452,JISG3457/3456,JISG3461.GB 9711.1/SY5037/GB3092

 

3)Grade:API 5L GR.B, X40, X42, X52, X56, X60, X65, X70.ST37/37-2,ST33,ST35.8,ST35.4.GB 9711.1/SY5037/GB3092

 

OD: 406.4MM-1422MM (16”-56”)

Thickness: 8MM-50.8MM depends on OD

 

2. Packing & Delivery:

 

Packaging Details:

seaworthy package,bundles wrapped with strong steel strip

Delivery Detail:

15-30days after received 30%TT

 

3. LSAW Welded Steel Pipes Data Sheet:

 

Standard: APISPEC 5L

Mechanical Properties

 

Standard

Grade

(MPa)

(MPa)

Yield strength

Tensile Strength

API SPEC 5L

PSL1

B

≥241

≥414

×42

≥290

≥414

×46

≥317

≥434

×52

≥359

≥455

×56

≥386

≥490

×60

≥414

≥517

×65

≥448

≥531

×70

≥483

≥565

PSL2

 

Min

Max

Min

Max

B

241

448

441

758

×42

290

496

414

758

×46

317

524

434

758

×52

359

531

455

758

×56

386

544

490

758

×60

414

565

517

758

×65

448

600

531

758

×70

483

621

565

758

 

Chemical Composition(%)

 

Standard

Grade

C

Mn

P

S

CEV

Max

Max

Max

Max

Max

PSL1

 

-

B

0.26

1.2

0.030

0.030

×42

0.26

1.3

0.030

0.030

×46,×52,×56,X60

0.26

1.4

0.030

0.030

X65

0.26

1.45

0.030

0.030

X70

0.26

1.65

0.030

0.030

PSL2

 

 

0.43

B

0.22

1.20

0.025

0.015

×42

0.22

1.30

0.025

0.015

×46,×52,×56, X60

0.22

1.40

0.025

0.015

X65

0.22

1.45

0.025

0.015

X70

0.22

1.65

0.025

0.015

 

5. LSAW Welded Steel Pipes Products Showroom:

 

LSAW carbon welded pipe

carbon LSAW Welded Pipe

LSAW

 

Q: What are the different types of steel coatings used for pipes?
Some of the different types of steel coatings used for pipes include epoxy coatings, polyethylene coatings, fusion bonded epoxy (FBE) coatings, and zinc coatings.
Q: How do you determine the maximum allowable stress for a steel pipe?
Several factors need to be taken into account in order to determine the maximum stress that a steel pipe can withstand. The type of steel used in the pipe is of utmost importance, as different types have varying mechanical properties and strengths. Additionally, the dimensions and thickness of the pipe are significant factors in determining its maximum stress capacity. Generally, thicker pipes have higher stress limits compared to thinner ones. Furthermore, it is crucial to consider the operating conditions that the pipe will be exposed to. This includes the temperature, pressure, and the nature of the fluid flowing through the pipe. These conditions can greatly impact the maximum stress that the pipe can tolerate. For instance, high temperatures or corrosive fluids can weaken the steel and reduce its strength. Engineers typically rely on industry standards and codes, such as the ASME Boiler and Pressure Vessel Code and the API standards, to determine the maximum stress limit. These standards provide guidelines and formulas for calculating the maximum stress based on the material properties, dimensions, and operating conditions of the pipe. It is important to emphasize that determining the maximum stress limit is a critical step in ensuring the structural integrity and safety of the steel pipe. It requires a comprehensive understanding of the materials, design considerations, and industry standards. Therefore, it is advisable to seek guidance from experienced engineers or professionals who specialize in piping design and analysis to accurately determine the maximum stress that a steel pipe can withstand.
Q: Can steel pipes be used for underground telecommunications networks?
Yes, steel pipes can be used for underground telecommunications networks. Steel pipes are commonly used for their durability, strength, and resistance to corrosion, making them suitable for protecting and housing telecommunication cables underground. They provide reliable protection against external elements and mechanical damage, ensuring the smooth operation of underground telecommunications networks.
Q: What is the diameter of the steel tube DN20?
Pipe installation without conversion, because in the same standard in the same diameter connecting dimensions of the same nominal pressure level of the same, and the same material have the same diameter, the nominal diameter of the purpose is to facilitate connectivity
Q: Can steel pipes be used for structural supports in buildings?
Yes, steel pipes can be used for structural supports in buildings. Steel pipes are commonly used in construction due to their high strength, durability, and ability to withstand heavy loads. They provide excellent structural support, especially in applications that require long spans or high load-bearing capacities. Additionally, steel pipes are resistant to corrosion and can be easily connected or welded, making them a popular choice in building construction.
Q: How do steel pipes handle soil movement?
Steel pipes are able to handle soil movement effectively due to their inherent strength and flexibility. The sturdy nature of steel allows the pipes to withstand the pressures exerted by soil movement, while their flexibility enables them to adapt and adjust to changes in the soil's position without fracturing or breaking. Additionally, steel pipes can be designed with specific coatings and reinforcements to further enhance their resistance to soil movement, making them a reliable choice for various applications.
Q: Are steel pipes suitable for solar power plants?
Yes, steel pipes are suitable for solar power plants. Steel pipes are often used in the construction of solar power plants due to their durability, strength, and resistance to corrosion. They can be used for various purposes in a solar power plant, including the transportation of fluids such as water or heat transfer fluids, as well as providing structural support for solar panels and other equipment. Steel pipes are capable of withstanding high temperatures and pressure, making them ideal for the efficient operation of solar power plants. Additionally, steel pipes are readily available and cost-effective, making them a popular choice in the construction of solar power plants.
Q: How are steel pipes used in the manufacturing of wind turbines?
The manufacturing process of wind turbines relies heavily on steel pipes, which are essential components for constructing both the tower and the foundation. The tower, a tall and sturdy structure, is typically made by welding together large steel pipes. These pipes are responsible for providing the necessary strength and stability to bear the weight of the entire wind turbine and withstand the powerful forces generated by the rotating blades. Apart from the tower, steel pipes are also crucial in building the foundation of the wind turbine. The foundation requires a solid and stable base to ensure the turbine remains upright and secure. To achieve this, deep foundation piles made of thick-walled steel pipes are commonly used. These piles are driven deep into the ground to anchor the wind turbine and prevent it from toppling over. Furthermore, steel pipes are utilized in the transportation of the electricity generated by wind turbines. Once the wind energy is converted into electrical energy, it is transmitted through an internal electrical system to the base of the tower. From there, the electricity is often transferred through underground cables to a substation, where it is distributed into the power grid. Steel pipes are employed to protect and encase these cables, ensuring insulation and safe transmission of electricity. In summary, steel pipes play a critical role in wind turbine manufacturing by providing structural support, stability, and efficient electricity transmission. The durability and strength of steel make it an ideal material for enduring the harsh environmental conditions and immense forces associated with the operation of wind turbines.
Q: How are steel pipes insulated to prevent condensation?
Steel pipes are typically insulated using materials such as foam or fiberglass wraps, which act as a barrier between the cold pipe surface and the surrounding air. This insulation prevents the formation of condensation by reducing heat transfer and maintaining the pipe temperature above the dew point of the air.
Q: How do steel pipes perform in seismic zones?
Steel pipes are commonly used in seismic zones due to their high strength and flexibility. They are able to withstand the dynamic forces and ground movements caused by earthquakes, offering excellent resistance to damage and deformation. The ductility and toughness of steel pipes allow them to absorb and dissipate energy during seismic events, reducing the risk of failure or collapse. Additionally, steel pipes can be designed and installed with proper reinforcement and connections to further enhance their performance in seismic zones.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords