• Large diameter longitudinal submerged arc welded pipe System 1
  • Large diameter longitudinal submerged arc welded pipe System 2
  • Large diameter longitudinal submerged arc welded pipe System 3
Large diameter longitudinal submerged arc welded pipe

Large diameter longitudinal submerged arc welded pipe

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT or LC
Min Order Qty:
25 m.t.
Supply Capability:
6000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

1.Specification of Large diameter longitudinal submerged arc welded pipe:

 

1)Application: It is widely applied to line pipe in oil and sewage transportation , and it is used in Low pressure liquid and gassy transportation and it is also good Structure pipe in building and bridge field.

 

2)Standard:ASTM A53,ASTM A671 ,ASTM A672 .ASTM A252  API 5L (PSL-1,PSL-2) ,API 5L 2B ,2H,2W.DIN1626,DIN17175,DIN1629.JISG 3452,JISG3457/3456,JISG3461.GB 9711.1/SY5037/GB3092

 

3)Grade:API 5L GR.B, X40, X42, X52, X56, X60, X65, X70.ST37/37-2,ST33,ST35.8,ST35.4.GB 9711.1/SY5037/GB3092

 

2.Large diameter longitudinal submerged arc welded pipe Size:

OD: 406.4MM-1422MM (16”-56”)

Thickness: 8MM-50.8MM depends on OD

 

3. Packing & Delivery

 

Packing Detail: bundles with anti-rust painting and with plastic cap

Delivery Term: 30 days after receving payment or L/C

 

4.Large diameter longitudinal submerged arc welded pipe Data Sheet:

 

Standard: APISPEC 5L

 Mechanical Properties

 

Standard

Grade

(MPa)

(MPa)

Yield strength

Tensile Strength

API SPEC 5L

PSL1

B

≥241

≥414

×42

≥290

≥414

×46

≥317

≥434

×52

≥359

≥455

×56

≥386

≥490

×60

≥414

≥517

×65

≥448

≥531

×70

≥483

≥565

PSL2

 

Min

Max

Min

Max

B

241

448

441

758

×42

290

496

414

758

×46

317

524

434

758

×52

359

531

455

758

×56

386

544

490

758

×60

414

565

517

758

×65

448

600

531

758

×70

483

621

565

758

 Chemical Composition(%)

 

Standard

Grade

C

Mn

P

S

CEV

Max

Max

Max

Max

Max

PSL1

 

-

B

0.26

1.2

0.030

0.030

×42

0.26

1.3

0.030

0.030

×46,×52,×56,X60

0.26

1.4

0.030

0.030

X65

0.26

1.45

0.030

0.030

X70

0.26

1.65

0.030

0.030

PSL2

 

 

0.43

B

0.22

1.20

0.025

0.015

×42

0.22

1.30

0.025

0.015

×46,×52,×56, X60

0.22

1.40

0.025

0.015

X65

0.22

1.45

0.025

0.015

X70

0.22

1.65

0.025

0.015

 

5. Large diameter longitudinal submerged arc welded pipe Products Showroom:

 

LSAW carbon welded pipe

carbon LSAW Welded Pipe

LSAW

 

Q: Can steel pipes be used for wastewater disposal?
Indeed, wastewater disposal can be accomplished using steel pipes. Owing to their robustness, strength, and corrosion resistance, steel pipes find widespread application in wastewater systems. They are capable of withstanding the substantial pressure and flow rates commonly encountered in wastewater scenarios, efficiently conveying it to treatment plants or other disposal sites. Moreover, steel pipes can be enhanced with coatings or linings that offer additional safeguard against corrosion or chemical reactions with the wastewater, further enhancing their durability and efficacy in wastewater disposal.
Q: Are steel pipes suitable for potable water supply?
Yes, steel pipes are suitable for potable water supply. They are commonly used for water distribution systems due to their durability, strength, and resistance to corrosion. However, it is important to ensure that the steel pipes are properly coated or lined to prevent any potential contamination of the water supply.
Q: How are steel pipes used in the construction of stormwater drainage systems?
Steel pipes are commonly used in the construction of stormwater drainage systems due to their durability and strength. They serve as underground conduits to efficiently transport stormwater away from built-up areas, preventing flooding and water damage. Steel pipes offer high resistance to external pressure and are capable of withstanding heavy loads, making them suitable for underground installations. Additionally, their corrosion-resistant properties ensure long-term effectiveness and minimize maintenance requirements. Overall, steel pipes are essential components in stormwater drainage systems, providing reliable and efficient water management solutions.
Q: Can steel pipes be used for sewage treatment plants?
Yes, steel pipes can be used for sewage treatment plants. Steel pipes are commonly used in sewage treatment plants due to their durability, strength, and resistance to corrosion. They can efficiently transport wastewater and withstand the harsh chemical environment found in sewage treatment facilities.
Q: What are the safety measures to be followed while working with steel pipes?
There are several safety measures that should be followed while working with steel pipes. Firstly, it is important to wear appropriate personal protective equipment (PPE) such as safety glasses, gloves, and steel-toed boots to protect against potential hazards. Secondly, workers should be cautious of sharp edges or burrs on the pipes and handle them with care to avoid cuts or injuries. Additionally, proper lifting techniques should be employed when moving heavy steel pipes to prevent strains or back injuries. It is also crucial to secure pipes properly during transport or storage to prevent accidents. Finally, workers should be trained on the safe use of tools and equipment associated with steel pipe work to minimize the risk of accidents or damage.
Q: How are steel pipes protected against rust and corrosion?
Steel pipes are protected against rust and corrosion through various methods such as applying protective coatings like zinc or epoxy, using cathodic protection techniques, or by utilizing stainless steel pipes that have inherent resistance to rust and corrosion. Additionally, regular maintenance and inspections help to identify and address any potential corrosion issues early on.
Q: How are steel pipes used in bridge construction?
Steel pipes are commonly used in bridge construction for various purposes. They are often used as piles to provide structural support to the bridge foundation, ensuring stability against soil movement and water pressure. Additionally, steel pipes are used as structural components in the bridge's superstructure, such as for trusses and beams, due to their high strength and durability. Steel pipes also play a crucial role in carrying utilities, such as water and gas pipelines, across the bridge. Overall, steel pipes are an essential element in bridge construction, providing strength, stability, and functionality to the structure.
Q: How are steel pipes used in the manufacturing of telecommunications infrastructure?
Steel pipes are used in the manufacturing of telecommunications infrastructure to provide a sturdy and reliable framework for cables and wires. These pipes are commonly used for underground and overhead installations, ensuring protection and support for the necessary communication systems.
Q: What is the difference between seamless and welded steel pipes?
The main difference between seamless and welded steel pipes lies in their manufacturing process. Seamless pipes are made by piercing a solid cylindrical steel billet to create a hollow tube without any welding or joints. On the other hand, welded pipes are formed by rolling a flat steel plate and then welding the edges together to create a cylindrical shape. This welding process introduces a seam along the length of the pipe. Consequently, seamless pipes are typically considered stronger, more reliable, and better suited for high-pressure applications, while welded pipes are more cost-effective and commonly used for less demanding applications.
Q: Are steel pipes suitable for food processing facilities?
Yes, steel pipes are suitable for food processing facilities. Steel pipes are widely used in the food processing industry due to their numerous benefits. Firstly, steel pipes are highly durable and can withstand high temperatures, pressures, and corrosive substances often used in food processing. This ensures the pipes will not degrade or contaminate the food products. Additionally, steel pipes are easy to clean and maintain, making them ideal for maintaining high levels of hygiene required in food processing facilities. Steel pipes also have excellent resistance to bacteria growth, further ensuring the safety and quality of the food being processed. Furthermore, steel pipes are cost-effective and have a long lifespan, making them a reliable and economical choice for food processing facilities. Overall, steel pipes are a suitable and preferred option for food processing facilities due to their durability, cleanliness, and resistance to contamination.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords