• 20kVA On Grid Solar Inverter GS2000-SS System 1
  • 20kVA On Grid Solar Inverter GS2000-SS System 2
  • 20kVA On Grid Solar Inverter GS2000-SS System 3
20kVA On Grid Solar Inverter GS2000-SS

20kVA On Grid Solar Inverter GS2000-SS

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
10 unit
Supply Capability:
100 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

GW2000-SS

 

GW2000-SS photovoltaic inverter is suitable for home rooftop photovoltaic system, designed under modern industrial concept. There are three colors for option with fashionable appearance. This model uses state-of-the-art control technology, which has an extremely powerful input voltage and input current capability. The THDi can be controlled within 1%, when the maximum output power of PV system ranges from1800W to 2300W. It holds a safe lead among similar products.

 

Input DataMax.PV-generator power[W]2300
Max.DC voltage[V]500
MPPT voltage range[V]125~450
Turn on DC voltage[V]125

Max.DC work current[A]

15
Number of inputs/MPP trackers2/1
DC connectionMC IV connector
Self-energy consumption[W]<5< td="">
AC Output DataNominal AC power[W]2000
Max.AC power[W]2000
Max.output current[A]10
Nominal output voltage rangeAccording to VDE 0126-1-1/AI, RD1663, ENEL, G83,G59,SAA
AC grid frequencyAccording to VDE 0126-1-1/AI, RD1663, ENEL, G83,G59,SAA
THDi〈1%
Power factor~1 (Norminal power)
AC connectionSingle phase
EfficiencyMax.efficiency97.0%
European efficiency96.0%
MPPT adaptation efficiency>99.5%
Safty EquipmentLeakage current monitoring unitIntegrated
DC switch disconnectorOptional
Islanding protectionAFD
Grid monitoring

According to VDE 0126-1-1/AI,AS4777.1/2/3, RD1663,

ENEL,G83,G59-2

Normative ReferenceEMC complianceEN 61000-6-1,EN 61000-6-2, EN 61000-6-3,EN 61000-6-4
Safety complianceAccording to IEC 62109-1,AS3100
General DataDimensions(W*H*D) [mm]330*350*125
Net weight [kg]12
HousingFor outdoor and indoor
Mounting informationWall mounting
Operating temperature range-20~60℃(up 45℃ derating)
Relative humidity0 ~ 95%
Site altitude[m]2000
IP proection classIP65
TopologyTransformerless
CoolingNature convection
Noise level[dB]〈25
Display4"LCD
CommunicationUSB2.0;RS485(Wireless/Bluetooth optional)
Standard warranty[years]5/10(optional)

 

 

Q: How do you calculate the efficiency of a solar inverter?
To calculate the efficiency of a solar inverter, you need to divide the output power by the input power and multiply it by 100. The formula is: Efficiency = (Output Power / Input Power) * 100.
Q: What is the role of capacitors in a solar inverter?
The role of capacitors in a solar inverter is to store and release electrical energy in order to regulate and smooth out the flow of power. They help to stabilize the voltage levels, filter out any fluctuations or noise in the electrical signal, and provide a reserve of power for sudden increases in demand. Capacitors also improve the overall efficiency and performance of the solar inverter by reducing the strain on other components and preventing damage from power surges or spikes.
Q: What is the role of a synchronization circuit in a solar inverter?
The role of a synchronization circuit in a solar inverter is to ensure that the inverter is synchronized with the utility grid. This circuit monitors the frequency and phase of the grid and adjusts the inverter's output accordingly to match the grid's characteristics. By synchronizing the inverter with the grid, it allows for safe and efficient power transfer, prevents disruptions to the grid, and enables the inverter to operate in parallel with other power sources.
Q: Can a solar inverter be used with a solar-powered security system?
Yes, a solar inverter can be used with a solar-powered security system. A solar inverter is responsible for converting the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power electrical devices. In the context of a solar-powered security system, a solar inverter is essential for converting the energy generated by solar panels into usable power to operate the security system's components, such as cameras, sensors, alarms, or communication devices. Therefore, integrating a solar inverter is crucial to ensure the functionality of a solar-powered security system.
Q: Can a solar inverter be used in commercial applications?
Yes, a solar inverter can be used in commercial applications. Solar inverters are designed to convert the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power electrical devices and appliances. This makes them suitable for a wide range of commercial applications such as offices, retail stores, factories, and other commercial buildings where solar energy can be harnessed to reduce electricity costs and promote sustainability.
Q: How does a solar inverter handle different temperature conditions?
A solar inverter is designed to handle different temperature conditions by incorporating various protective measures. It typically includes temperature sensors and cooling systems to monitor and regulate its internal temperature. Additionally, it may have heat sinks or fans to dissipate excess heat generated during operation. These features ensure that the inverter operates within its optimal temperature range, maximizing efficiency and protecting it from potential damage caused by extreme temperature variations.
Q: What is the power factor of a solar inverter?
The power factor of a solar inverter is a measure of how effectively it converts the DC power generated by solar panels into AC power that can be used by electrical devices. A high power factor indicates efficient conversion, while a low power factor signifies energy losses.
Q: What are the main components of a solar inverter?
The main components of a solar inverter include the converter, control circuitry, filters, and the inverter output. The converter converts the direct current (DC) power generated by solar panels into alternating current (AC) power. The control circuitry regulates and manages the power conversion process. Filters ensure the output power is clean and free from any noise or interference. The inverter output delivers the AC power to the electrical grid or to power the connected devices.
Q: Can a solar inverter be used with a three-phase electrical system?
Yes, a solar inverter can be used with a three-phase electrical system. In fact, many solar inverters are specifically designed to work with three-phase systems. They convert the direct current (DC) generated by the solar panels into alternating current (AC) that can be used to power three-phase electrical loads.
Q: How does a solar inverter handle voltage fluctuations?
A solar inverter handles voltage fluctuations by constantly monitoring the input voltage from the solar panels and adjusting its output voltage accordingly. It maintains a stable output voltage even when there are fluctuations in the input voltage, ensuring that the electricity generated by the solar panels is suitable for use in the electrical grid or for powering appliances.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords