• Ultra Thin Monocrystalline Solar Cells High Quality 16.00%-18.20% System 1
  • Ultra Thin Monocrystalline Solar Cells High Quality 16.00%-18.20% System 2
Ultra Thin Monocrystalline Solar Cells High Quality 16.00%-18.20%

Ultra Thin Monocrystalline Solar Cells High Quality 16.00%-18.20%

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
1000 pc
Supply Capability:
1000000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 Solar Cells:

Solar cells is made by solar wafer, it has three categories of solar cell right now, monocrystalline polycrystalline and thin film,These cells are entirely based around the concept PN junction, which is the critical part of solar module, it is the part that can convert the light energy into electricity, the thickness is from 180um to 200um, with even busbars to conduct electricity, textured cell can decrease diffuse reflection; they are often electrically connected and encapsulated as a module. Photovoltaic modules often have a sheet of glass on the front (sun up) side, allowing light to pass while protecting  semiconductor wafers from abrasion and impact due to wind-driven debris, rain, hail, etc. Solar cells are also usually connected in series in modules, creating an additive voltage. Connecting cells in parallel will yield a higher current;With high quality and stable quality. Our Cells can greatly improve the performance of Solar Modules.

Features:

1. High conversion efficiencies resulting in superior power output performance.

2. Outstanding power output even in low light or high temperature conditions

3. Optimized design for ease of soldering and lamination

4. Long-term stability, reliability and performance

5. Low breakage rate

6. Color uniformity


 Solar Cells Advantage:

•  High efficiency and stable performance in photovoltaic conversion.
•  Advanced diffusion technique ensuring the homogeneity of energy conversion efficiency of the cell.
•  Advanced PECVD film forming, providing a dark blue silicon nitride anti-reflection film of homogenous color and attractive         appearance.
•  High quality metal paste for back surface and electrode, ensuring good conductivity, high pulling strength and ease of soldering.
•  High precision patterning using screen printing, ensuring accurate busbar location for ease with automatic soldering a laser cutting. 

Specifications:

Product  model

Eff. %

Pmax (W)

Vpm(V)

Ipm (A)

Voc(V)

Isc(A)

18.20%-4.429W

EFF≥18.20%

Pmax ≥4.429

0.535±3

8.2785

0.636

8.815

18.00%-4.380W

18.20%>EFF≥18.00%

4.429>Pmax ≥4.380

0.534±3

8.2022

0.635

8.753

17.80%-4.332W

18.00%>EFF≥17.80%

4.380>Pmax ≥4.332

0.533±3

8.1088

0.634

8.704

17.60%-4.283W

17.80%>EFF≥17.60%

4.332>Pmax ≥4.283

0.531±3

8.0662 

0.633

8.620 

17.40%-4.234W

17.60%>EFF≥17.40%

4.283>Pmax ≥4.234

0.530±3

7.9896 

0.632

8.610

17.20%-4.186W

17.40%>EFF≥17.20%

4.234>Pmax ≥4.186

0.529±3

7.9127 

0.631

8.529 

17.00%-4.137W

17.20%>EFF≥17.00%

4.186>Pmax ≥4.137

0.527±3

7.8503 

0.630

8.459 

16.80%-4.088W

17.00%>EFF≥16.80%

4.137>Pmax ≥4.088

0.524±3

7.8024 

0.629

8.397 

16.60%-4.040W

16.80%>EFF≥16.60%

4.088>Pmax ≥4.040

0.521±3

7.7539 

0.627

8.239 

16.40%-3.991W

16.60%>EFF≥16.40%

4.040>Pmax ≥3.991

0.519±3

7.6900 

0.625

8.198 

16.20%-3.942W

16.40%>EFF≥16.20%

3.991>Pmax ≥3.942

0.516±3

7.6404 

0.623

8.153 

16.00%-3.894W

16.20%>EFF≥16.00%

3.942>Pmax ≥3.894

0.514±3

7.5754 

0.620

8.145 

Packaging & Delivery of  Solar Cells

Carton Box Package and Deliver by air. It should be noticed that it should be avoid of water, sunshine and moist.

Monocrystalline Solar Cells High Quality 16.00%-18.20%

Monocrystalline Solar Cells High Quality 16.00%-18.20%



FAQ

We have organized several common questions for our clients,may help you sincerely:

①What price for each watt?

It depends on the efficiency of the solar cell, quantity, delivery date and payment terms.

②How long can we receive the product after purchase?

In the purchase of product within three working days, We will arrange the factory delivery as soon as possible. The pecific time of receiving is related to the state and position of customers.Commonly 7 to 10 working days can be served.

③Can you provide the peripheral products of the solar panels, such as the battery, controller, and inverter? If so, can you tell me how do they match each other?

Yes, we can, we have two companies for solar region, one is CNBM International, the other is CNBM engineering Co.

We can provide you not only the solar module but also the off grid solar system, we can also provide you service with on grid plant.

④What is your warranty of solar cell?

 Our product can promise lower than 0.3% open box crack, we support claim after opening the box if it has crackm color difference or sth, the buyer should give pictures immediately, we can not accept the claim after the solar cell has assembled to solar panel.

• Timeliness of delivery

• ⑤How do you pack your products?

We have rich experience on how to pack the solar cell to make sure the safety on shipment, we could use wooden box or pallet as buyer's preference.


Q: What is the difference between polysilicon and monocrystalline silicon photovoltaic cells?
Monocrystalline silicon cells with high battery conversion efficiency, good stability, but the higher cost. Polycrystalline silicon cells are less costly and slightly lower in conversion efficiency than straight-drawn monocrystalline silicon solar cells, with various defects in materials such as grain boundaries, dislocations, microdefections, and impurity carbon and oxygen in materials, as well as tarnished during process Transition metal.
Q: Can solar cells be used for powering universities?
Yes, solar cells can be used to power universities. Solar power systems, consisting of solar panels and batteries, can generate electricity from sunlight and store it for use in powering various university facilities such as classrooms, laboratories, offices, and dormitories. By utilizing solar energy, universities can reduce their dependence on traditional energy sources, lower their carbon footprint, and potentially save on electricity costs in the long run.
Q: How do solar cells generate electricity at night?
Solar cells do not generate electricity at night as they rely on sunlight to convert photons into electrical energy.
Q: Solar panel resistance is changed with what
the lower the ambient temperature, the smaller the internal resistance of the battery, power generation The higher the effect; the other hand, the higher the temperature, the greater the internal resistance, the lower the efficiency.
Q: The working principle of solar cells includes the three processes
The opposite of the electrical symbol of the photogenerated carriers in the solar cell pn junction built under the action of the electric field, the electron-hole pairs are separated, the electrons are concentrated on one side, the holes are concentrated on the other side, and the opposite sex charges are generated on both sides of the pn junction Of the accumulation, resulting in photogenerated electromotive force, that is, photovoltaic voltage.
Q: Can solar cells be used for powering electric vehicle charging stations?
Yes, solar cells can be used for powering electric vehicle charging stations. Solar panels can convert sunlight into electricity, which can then be used to charge electric vehicles. This renewable energy source is ideal for charging stations as it reduces reliance on traditional power grids and reduces carbon emissions.
Q: Can solar cells be recycled?
Yes, solar cells can be recycled. The process involves separating the different components, such as glass, metals, and semiconductors, and reusing or repurposing them for new solar cell production or other industries. Recycling solar cells helps reduce waste and environmental impact while also conserving valuable resources.
Q: What is the lifespan of a solar cell battery?
The lifespan of a solar cell battery can vary depending on various factors such as usage, quality, and maintenance. On average, a well-maintained solar cell battery can last anywhere from 5 to 25 years. However, advancements in technology and improvements in battery design are continually increasing the lifespan of solar cell batteries.
Q: Can solar cells be used in hot climates?
Yes, solar cells can be used in hot climates. In fact, solar cells are more efficient in hot climates due to increased sunlight and higher temperatures, which can enhance their overall performance. However, it is important to consider proper maintenance and cooling mechanisms to prevent any potential damage or decrease in efficiency caused by excessive heat.
Q: How do solar cells perform in regions with high levels of dust and sandstorms?
Solar cells may experience decreased performance in regions with high levels of dust and sandstorms. The accumulation of dust particles on the surface of solar panels can reduce their efficiency by blocking sunlight and reducing the amount of energy they can generate. Regular cleaning and maintenance of solar panels are essential in such environments to ensure optimal performance. Additionally, advancements in solar panel technology, such as anti-soiling coatings, are being developed to mitigate the impact of dust and sandstorms on solar cell performance.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords