Abb Solar Inverter Micro-Inverter BDM-300
- Loading Port:
- Qingdao
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 10 unit
- Supply Capability:
- 1000 unit/month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Description:
A solar micro-inverter, converts direct current (DC) electricity from a single solar panel to alternating current (AC). The electric power from several micro-inverters is combined and fed into an existing electrical grid. Micro-inverters contrast with conventional string or central inverter devices, which are connected to multiple solar panels.
Characteristic & Advantages:
More Energy Harvest: Distributed MPPT allows10~25% more energy harvest
Simple: Modularized,single ac cable to the house
Reliability: Longer life time and almost 100% operation hours
Security: No high Voltage, makes safter environments
Inteligent : Monitoring each module
Savings: No dc components and significantly save labor cost
MODEL | BDM-300-240A | BDM-300-208A | BDM-300-EU BDM-300-AU | |||
INPUT(DC) | Max Recommended PV Power (Wp) | 310 | ||||
Max DC Open Circuit Voltage (Vdc) | 60 | |||||
Max DC Input Current (Adc) | 12 | |||||
MPPT Tracking Accuracy | >99.5% | |||||
MPPT Tracking Range (Vdc) | 22-55 | |||||
Isc PV (absolute maximum) (Adc) | 14 140 | |||||
Maximum Inverter Backfeed Current to the Array (Adc) | 0 0 | |||||
OUTPUT(AC) | Rated AC Output Power (Wp) | 250 | ||||
Nominal Power Grid Voltage (Vac) | 240 | 208 | 230 | |||
Allowable Power Grid Voltage (Vac) | 211-264* | 183-229* | configurable | |||
Allowable Power Grid Frequency (Hz) | 59.3-60.5* | configurable | ||||
THD | <3% (at rated power) / | |||||
Power Factor (cos phi, fixed) | >0.99 (at rated power) | |||||
Current (maximum continuous) (Aac) | 1.2 | |||||
Current (inrush) (Peak and Duration) | 12A, 15us | |||||
Nominal Frequency (Hz) | 60 | 50 | ||||
Maximum Output Fault Current (Aac) | 2.2A peak | |||||
Maximum Output Overcurrent Protection (Aac) | 6.3 | |||||
Maximum Number of Units Per Branch | 16 (12AWG); 12 (14AWG) | |||||
SYSTEM EFFICIENCY | Peak Efficiency | 96.30% | 96.30% | 95.80% | ||
CEC Efficiency | 95.5% | |||||
Night Time Tare Loss (Wp) | 0.08 | 0.06 | 0.07 | |||
PROTECTION FUNCTIONS | Over/Under Voltage Protection | Yes | ||||
Over/Under Frequency Protection | Yes | |||||
Anti-Islanding Protection | Yes | |||||
Over Current Protection | Yes | |||||
Reverse DC Polarity Protection | Yes | |||||
Overload Protection | Yes | |||||
Protection Degree | NEMA-6 / IP-67 I | |||||
Environment Temperature | -40℃——+65℃ | |||||
OTHER PARAMETERS | Environment Humidity | 100%, condensation | ||||
Display | LED LIGHT | |||||
Communications | Power Line | |||||
Dimension (D-W-H mm) | 180*186*25 | |||||
Weight (Kg) | 1.5 | |||||
Environment Category | Indoor and outdoor | |||||
Wet Location | Suitable | |||||
Pollution Degree | PD 3 | |||||
Maximum Altitude | 2000 M | |||||
Overvoltage Category | II(PV), III (AC MAINS) | |||||
Product Safety Compliance | UL 1741 CSA C22.2 No. 107.1 | IEC/EN 62109-1 IEC/EN 62109-2 | ||||
Grid Code Compliance* (Refer to the label for the detailed grid code compliance) | IEEE 1547 | VDE-AR-N 4105* VDE V 0126-1-1/A1 G83/2, CEI 021 AS 4777.2 & AS 4777.3
| ||||
Note: For grid code VDE-AR-N 4105, maximum 3.68kVA PV plant is limited. The grid protection report and setting are readable from the gateway. For grid code G83/2, maximum 16A per phase is limited. The grid protection report and setting are readable from the gateway. Grid parameters are configurable through the BDG-256 gateway. |
- Q: Are there any safety concerns with solar inverters?
- Yes, there can be safety concerns with solar inverters. Some potential issues include electrical shocks from improper installation or maintenance, fire hazards due to faulty wiring or overheating, and electromagnetic radiation. However, these risks can be minimized through proper installation, regular inspections, and adherence to safety guidelines and regulations.
- Q: What is the typical installation process for a solar inverter?
- The typical installation process for a solar inverter involves several steps. Firstly, the location for the inverter needs to be determined, usually close to the solar panels and near the main electrical panel. The inverter is then mounted securely on a wall or other suitable surface. Next, the DC input wires from the solar panels are connected to the input terminals of the inverter. The AC output wires from the inverter are then connected to the main electrical panel. Finally, the inverter is connected to a monitoring system, if applicable, to track and manage the solar power generation. It is important to follow all safety guidelines and local electrical codes during the installation process.
- Q: Can a solar inverter be used with a solar-powered healthcare system?
- Yes, a solar inverter can be used with a solar-powered healthcare system. A solar inverter is responsible for converting the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power various appliances and systems, including healthcare equipment. By integrating a solar inverter into a solar-powered healthcare system, the generated solar energy can be efficiently utilized to run medical devices and provide reliable electricity for critical healthcare services.
- Q: Can a solar inverter be used in mobile or portable solar systems?
- Yes, a solar inverter can be used in mobile or portable solar systems. Solar inverters are essential components that convert the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power various devices. They are designed to be adaptable and can be used in a wide range of applications, including mobile or portable solar systems. This allows individuals to harness solar energy and use it to power their devices wherever they go, making it a convenient and sustainable solution for on-the-go power needs.
- Q: Can a solar inverter be used in systems with different module efficiencies?
- Yes, a solar inverter can be used in systems with different module efficiencies. The solar inverter is designed to convert the DC electricity produced by the solar modules into AC electricity that can be used in the electrical grid or to power appliances. It does not depend on the module efficiency, but rather on the DC voltage and current produced by the modules. Therefore, as long as the DC output of the modules falls within the specifications of the solar inverter, it can be used regardless of the module efficiencies.
- Q: What is the role of a frequency regulation feature in a solar inverter?
- The role of a frequency regulation feature in a solar inverter is to ensure that the power output from the solar panels matches the grid's frequency and voltage requirements. It helps maintain a stable and consistent frequency, allowing for seamless integration of solar power into the existing electrical grid.
- Q: How does a solar inverter handle low light conditions?
- A solar inverter handles low light conditions by continuously monitoring the amount of sunlight received by the solar panels. When light levels drop, the inverter adjusts its operation to maximize power output by optimizing the voltage and current levels. It uses advanced algorithms and power electronics to convert the available sunlight into usable electricity efficiently, ensuring that even in low light conditions, the solar system continues to generate power.
- Q: How does a solar inverter handle voltage and frequency variations caused by voltage sags and swells?
- A solar inverter is equipped with various mechanisms to handle voltage and frequency variations caused by voltage sags and swells. When there is a voltage sag or swell in the electrical grid, the solar inverter employs a technique called Maximum Power Point Tracking (MPPT) to regulate the power output from the solar panels. During a voltage sag, when the grid voltage drops below the normal level, the solar inverter adjusts its MPPT algorithms to ensure that the solar panels continue to operate at their maximum power point. This enables the inverter to extract the maximum available power from the panels and compensate for the reduced grid voltage. By dynamically adjusting the operating point of the panels, the inverter mitigates the effects of the voltage sag and maintains optimal power output. Similarly, in the case of a voltage swell, when the grid voltage increases above the normal level, the solar inverter again utilizes its MPPT capabilities to regulate the power output. It adjusts the operating point of the panels to ensure that they do not exceed their rated voltage, thereby protecting them from potential damage. This allows the inverter to effectively handle the increased grid voltage and prevent any adverse effects on the solar panels. In addition to voltage regulation, a solar inverter also addresses frequency variations caused by voltage sags and swells. It is designed to synchronize with the grid frequency and maintain a stable output frequency. When the grid frequency deviates from the normal range, the inverter adjusts its internal control systems to match the grid frequency. This synchronization ensures that the power output from the inverter aligns with the grid requirements, allowing for seamless integration of solar energy into the electrical system. Overall, a solar inverter utilizes MPPT algorithms, voltage regulation mechanisms, and frequency synchronization capabilities to handle voltage and frequency variations caused by voltage sags and swells. These features enable the inverter to adapt to changing grid conditions, maximize power extraction from the solar panels, and maintain a stable and reliable power output.
- Q: Can a solar inverter be used in areas with high levels of lightning activity?
- Yes, a solar inverter can be used in areas with high levels of lightning activity. However, it is important to ensure that the inverter is designed to withstand lightning strikes and has appropriate surge protection measures in place to prevent damage. Additionally, proper grounding and installation by a qualified professional are crucial to mitigate any potential risks associated with lightning strikes.
- Q: Can a solar inverter be connected to a smartphone app for monitoring?
- Yes, a solar inverter can be connected to a smartphone app for monitoring. Many solar inverter manufacturers offer mobile apps that allow users to monitor and control their solar power systems remotely through their smartphones. These apps provide real-time data on energy production, system performance, and can also enable users to adjust settings and receive alerts or notifications related to their solar power system.
Send your message to us
Abb Solar Inverter Micro-Inverter BDM-300
- Loading Port:
- Qingdao
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 10 unit
- Supply Capability:
- 1000 unit/month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords