• Malleable Iron Pipe Fitting Hot Dipped Galvanized System 1
  • Malleable Iron Pipe Fitting Hot Dipped Galvanized System 2
  • Malleable Iron Pipe Fitting Hot Dipped Galvanized System 3
Malleable Iron Pipe Fitting Hot Dipped Galvanized

Malleable Iron Pipe Fitting Hot Dipped Galvanized

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
10 m.t.
Supply Capability:
5000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing


1. hydraulic hose crimping machine in Electrical equipment&supplies

Specifications

High pressure hose to the winding wire matrix, skin coated refractory coating layer steel braided flame retardant layer 

APPLICATIONS:It is mainly used in high temperature surroundings and in conditions having heat source or heat radiation source,such as oil field well-control,metal smelt,and chemical industry.

Inner Diameter of Hose mm

Inside Diameter
(mm)

Reinforcement Diameter (mm)

Outside Diameter (mm)

Work Pressure (MPa)

Proof Pressure (MPa)

Minimum Explosive Pressure (MPa)

Minimum Bending Radius mm

Refractory °C

Mpa

Psi

MPa

Psi

Mpa

Psi

φ13(1/2")

13±0.5

22.2±0.8

44±1.06

43

6230

64.5

9435

86

12460

230

750

φ16(5/8")

16±0.5

26±0.8

47±1.5

38

5506

57

8259

76

11012

260

750

φ19(3/4")

19±0.5

30±0.8

52±1.5

34.5

4999

51.75

7498

69

9998

300

750

φ25(1")

25±0.8

36±0.8

59±1.5

27.5

3984

41.25

5976

55

7968

360

750

φ32(5/4")

32±0.8

44±0.8

69±2.0

20.5

2970

30.75

4455

41

5940

470

750

φ38(3/2")

38±1.0

76±2.0

87.2±5.1

17

2463

25.5

3694

34

4926

570

750

φ51(2")

51±1.0

91±2.0

100.7±5.1

17

2463

25.5

3695

34

4926

740

750

 

 

2. Antiflaming,fire-resistance rubber hose assembly

Specifications

High pressure hose to the winding wire matrix, skin coated refractory coating layer steel braided flame retardant layer and laye 

APPLICATIONS:It is mainly used in high temperature surroundings and in conditions having heat source or heat radiation source,such as oil field well-control,metal smelts,and chemical industry

Inner Diameter of Hose mm

Inside Diameter
(mm)

Reinforcement Diameter (mm)

Outside Diameter (mm)

Work Pressure (MPa)

Proof Pressure (MPa)

Minimum Explosive Pressure (MPa)

Minimum Bending Radius mm

Refractory °C

Mpa

Psi

MPa

Psi

Mpa

Psi

φ13(1/2")

13±0.5

22.2±0.8

44±1.06

43

6230

64.5

9435

86

12460

230

750

φ16(5/8")

16±0.5

26±0.8

47±1.5

38

5506

57

8259

76

11012

260

750

φ19(3/4")

19±0.5

30±0.8

52±1.5

34.5

4999

51.75

7498

69

9998

300

750

φ25(1")

25±0.8

36±0.8

59±1.5

27.5

3984

41.25

5976

55

7968

360

750

φ32(5/4")

32±0.8

44±0.8

69±2.0

20.5

2970

30.75

4455

41

5940

470

750

φ38(3/2")

38±1.0

76±2.0

87.2±5.1

17

2463

25.5

3694

34

4926

570

750

φ51(2")

51±1.0

91±2.0

100.7±5.1

17

2463

25.5

3695

34

4926

740

750

 

3. hydraulic hose Universal Wire-braided DN6

Quick Details

·         Place of Origin: Hebei, China (Mainland)

·         Brand Name: CMAX/CNBM

·         Model Number: GB/T3683-92

Packaging & Delivery

Packaging Details:

hydraulic hose is wrapped with fabrics

Delivery Detail:

80000meters/30days

Specifications

Universal Wire-braided Hydraulic Hose, Q/FLT01-AStandard GB/T3683-92, Temperature range: -40 to +100 

Universal Wire-braided Hydraulic Hose 
Q/FLT01-AStandard GB/T3683-92 
Tube: oil resistant synthetic rubber
Reinforcement: 1 W/B (one high tensile steel wire braid)
Cover: abrasion and weather resistant synthetic rubber 
Temperature range: -40 to +100.

 

4. Drilling Rubber Hose

Quick Details

·         Place of Origin: Hebei, China (Mainland)

·         Brand Name: CMAX/CNBM

Packaging & Delivery

Packaging Details:

Package: plastic films, then wrapped with fabrics

Delivery Detail:

According to the Quantity

Specifications

Drilling hose 

DN

 

Hose I.D

Wire O.D

 

Hose O.D

 

Working Pressure

Burst Pressure

Minimum Bend Radius

Weight

Length

inch

mm

mm

 

mm

MPa

psi

MPa

psi

mm

kg/m

metres

5

3/16

4.8

9.5

11.8

25.0

3630

100.0

14280

89

0.19

50/100

6

1/4

6.4

11.1

13.4

22.5

3270

90.0

12840

102

0.21

50/100

8

5/16

7.9

12.7

15.0

21.5

3120

85.0

12280

114

0.24

50/100

10

3/8

9.5

15.1

17.4

18.0

2615

72.0

10280

127

0.33

50/100

13

1/2

12.7

18.3

20.6

16.0

2320

64.0

9180

178

0.41

50/100

16

5/8

15.9

21.4

23.7

13.0

1890

52.0

7420

203

0.45

50/100

19

3/4

19.0

25.4

27.7

10.5

1530

42.0

6000

241

0.58

50/100

25

1

25.4

33.3

35.6

8.8

1280

35.0

5020

305

0.88

50

32

11/4

31.8

40.5

43.5

6.3

920

25.0

3600

419

1.23

20/40

38

11/2

38.1

46.8

50.6

5.0

730

20.0

2860

508

1.51

20/40

51

2

50.8

60.2

64.0

4.0

580

16.0

2280

 

5. Concrete pump rubber hose

Quick Details

·         Place of Origin: Hebei, China (Mainland)

·         Brand Name: CMAX/CNBM

Packaging & Delivery

Packaging Details:

Package: plastic films, then wrapped with fabrics

Delivery Detail:

According to the Quantity

Specifications

Specifications 
High Quality Concrete Pump Delivery Rubber Hose 
1.high quality 
2.ISO9001:2008 
3.reasonable price 

 

1. Material: Black NR and BR  synthetic rubber .

 

2.Reinforcement:Spiral textile/steel wire.

 

3. Widely application: Schwing PM SANY Zoomlion and other brand concrete pump trucks.

 

4.Cover:Abrasion resistantant,heat and ozone resistant.

 

5.Inside diameter:50-152mm

 

6.Working pressure:8.5 MPA.

 

7.Detailed specification:

No

Description

ID

OD

Plies

Working Pressure

Burst Pressure

Weight

1

2 inch

50mm

70mm

2

8.5MPA 1200PSI

20MPA 3000PSI

3.5kgs

2

2.5 inch

63mm

88mm

2

8.5MPA 1200PSI

20MPA 3000PSI

4.9kgs

3

3 inch

76mm

102mm

2

8.5MPA 1200PSI

20MPA 3000PSI

6.5kgs

4

4 inch

100mm

130mm

2

8.5MPA 1200PSI

20MPA 3000PSI

9.3kgs

5

5 inch

125mm

155mm

2 or 4

8.5MPA 1200PSI

20MPA 3000PSI

10.9kgs

6

6 inch

152mm

184mm

2

8.5MPA 1200PSI

20MPA 3000PSI

13.3kgs

 

Malleable Iron Pipe Fitting Hot Dipped Galvanized

Malleable Iron Pipe Fitting Hot Dipped Galvanized


Q: What is the expected joint deflection capability of ductile iron pipes?
The expected joint deflection capability of ductile iron pipes is typically around 2 to 5 degrees per joint, allowing for flexibility and accommodating slight changes in alignment during installation and operation.
Q: Can ductile iron pipes be used for both water and wastewater applications?
Yes, ductile iron pipes can be used for both water and wastewater applications. Ductile iron pipes are known for their durability, strength, and corrosion resistance, making them suitable for a wide range of applications including water distribution, sewage systems, and wastewater treatment plants. These pipes are designed to withstand high pressure and are capable of handling the flow of both water and wastewater. Additionally, ductile iron pipes have a long lifespan, reducing the need for frequent replacements and maintenance, which makes them a cost-effective choice for both water and wastewater applications.
Q: What are the different types of restrained joints for ductile iron pipe?
Some of the different types of restrained joints for ductile iron pipe include mechanical joints, push-on joints, and restrained push-on joints. Mechanical joints use bolts and gaskets to create a tight seal, while push-on joints rely on a rubber gasket to provide a secure connection. Restrained push-on joints incorporate additional features such as external restraints or wedges to prevent pipe movement.
Q: How are ductile iron pipes repaired in case of damage?
Ductile iron pipes are commonly used in various applications due to their high durability and strength. However, like any other materials, they can experience damage over time due to external factors or internal corrosion. In such cases, there are several methods available for repairing ductile iron pipes. One common method is known as the trenchless repair technique. This method involves repairing the damaged section of the pipe without the need for extensive excavation. It typically includes the use of specialized equipment to access the damaged area and carry out the necessary repairs. This technique is particularly beneficial as it reduces disruption to the surrounding area and minimizes costs associated with excavation. Another method for repairing ductile iron pipes is the use of epoxy lining. This technique involves applying a layer of epoxy resin to the interior surface of the pipe, effectively sealing any cracks or leaks. Epoxy lining is an effective and cost-efficient solution, as it provides a long-lasting repair and improves the overall condition of the pipe. In cases where the damage is severe or extensive, the damaged section of the ductile iron pipe may need to be replaced. This typically involves cutting out the damaged portion and installing a new section of pipe. The replacement process may require excavation and can be more time-consuming and costly compared to other repair methods. However, it ensures a complete and permanent solution for the damaged pipe. It is worth noting that the specific repair method chosen for ductile iron pipes depends on the extent of the damage, accessibility, and other factors. Professional assessment and inspection are crucial to determine the most suitable repair technique. Consulting with experienced pipeline repair specialists or civil engineers is highly recommended to ensure the most effective and durable repair solution for ductile iron pipes.
Q: Ductile iron pipe is how many years warranty
Ductile iron pipe warranty is unlimited.
Q: Can ductile iron pipe be used for oil and gas transmission pipelines?
Yes, ductile iron pipe can be used for oil and gas transmission pipelines. Ductile iron pipe has many advantageous properties that make it suitable for such applications. It has a high tensile strength, which allows it to withstand the high pressures and stresses involved in oil and gas transmission. Additionally, ductile iron pipe has excellent corrosion resistance, making it highly resistant to the corrosive nature of oil and gas. This resistance is further enhanced by the use of protective coatings on the pipe's exterior. Ductile iron pipe is also known for its durability and longevity, ensuring the reliability and longevity of oil and gas transmission pipelines. Overall, the properties of ductile iron pipe make it a reliable and cost-effective option for use in oil and gas transmission pipelines.
Q: Are ductile iron pipes suitable for use in food processing plants?
Ductile iron pipes are indeed suitable for use in food processing plants due to their numerous advantageous qualities. Firstly, they possess immense strength and durability, enabling them to withstand high-pressure situations. This feature proves crucial in food processing plants where pipes encounter diverse pressures during liquid and slurry transportation. Moreover, ductile iron pipes exhibit exceptional resistance to corrosion. This attribute becomes paramount in food processing plants as the pipes come into contact with various types of food, beverages, and cleaning agents, which can gradually corrode them. The corrosion resistance of ductile iron pipes ensures the pipes' integrity and safeguards the food products from contamination. Furthermore, these pipes display remarkable resistance to temperature fluctuations, rendering them suitable for the extreme temperature conditions often present in food processing plants. They can endure both hot and cold fluids without compromising their structural integrity. Additionally, ductile iron pipes possess a smooth inner surface, contributing to the maintenance of food product quality and purity. The smooth interior minimizes deposits like scaling or biofilm, thereby reducing the risk of bacterial growth. This quality proves essential in food processing plants where maintaining a hygienic environment is of utmost importance. Lastly, ductile iron pipes are easy to install and maintain. They boast a lengthy service life and require minimal upkeep, thereby minimizing downtime and associated costs in food processing plants. Considering these factors, ductile iron pipes emerge as a reliable and suitable choice for use in food processing plants. They ensure the safe and efficient transportation of fluids while meeting the industry's stringent hygiene and quality requirements.
Q: What is the process of fusion bonding for ductile iron pipes?
Ductile iron pipes are joined together through the fusion bonding process, which involves applying heat and pressure to create a strong and long-lasting bond. This technique is commonly used in the construction and installation of underground water, sewer, and gas pipelines. To start the fusion bonding process, the surfaces of the pipes are thoroughly cleaned and prepared. This includes removing any dirt, debris, or rust that could hinder proper bonding. Specialized tools and techniques, such as wire brushing or sandblasting, are often utilized to ensure a clean and smooth surface. Once the surfaces are prepared, the pipes are aligned and securely clamped together. A fusion bonding machine, also known as a fusion welder, is then employed to apply heat and pressure to the joint. The fusion bonding machine consists of heating elements positioned around the joint and a hydraulic system that applies the necessary pressure. The heating elements, typically powered by electricity or gas, are designed to reach high temperatures capable of melting the ductile iron material. As the heat is applied, the ductile iron surfaces soften and fuse together, creating a strong bond. The pressure from the fusion bonding machine ensures that the molten iron flows evenly and uniformly between the joint surfaces, resulting in a seamless connection. The duration of the fusion bonding process varies depending on the size and thickness of the pipes and the specific project requirements. Once the fusion bonding is complete, the joint is allowed to cool and solidify, forming a permanent and leak-proof connection. Fusion bonding offers numerous advantages for ductile iron pipes. It provides a reliable and durable joint that can withstand high pressure, temperature variations, and external loads. The seamless connection also minimizes the risk of leaks, which is particularly important for underground pipelines that transport water, sewage, or gas. Overall, fusion bonding is a widely utilized technique for joining ductile iron pipes, ensuring their structural integrity and longevity in various infrastructure projects.
Q: How does ductile iron pipe handle ground movement and settlement?
Ductile iron pipe is known for its excellent ability to handle ground movement and settlement. Due to its inherent strength and flexibility, it can withstand significant ground shifts without experiencing major damage or failure. One of the key features of ductile iron pipe is its high tensile strength, which allows it to withstand external forces and pressures. This strength enables the pipe to resist the effects of ground movement, such as soil settlement, subsidence, or shifting due to seismic activity. Moreover, ductile iron pipe has inherent flexibility, which allows it to absorb and distribute stress caused by ground movement. The pipe's flexibility helps to minimize the impact of settlement by allowing it to adjust and adapt to changes in the surrounding soil. This characteristic helps prevent the pipe from cracking, breaking, or leaking when the ground shifts or settles. Additionally, ductile iron pipes are often installed with flexible joints, such as push-on or mechanical joints, which further enhance their ability to accommodate ground movement. These joints provide a degree of flexibility and movement, allowing the pipe to adjust to changes in the soil without experiencing stress concentrations or structural failure. Furthermore, ductile iron pipe is highly resistant to corrosion, which is another important factor in its ability to handle ground movement and settlement. Corrosion can weaken pipes and make them more susceptible to damage during ground shifts. However, the corrosion-resistant properties of ductile iron help maintain the pipe's structural integrity and durability, even in challenging soil conditions. In summary, ductile iron pipe is well-suited to handle ground movement and settlement due to its high tensile strength, flexibility, and corrosion resistance. These properties allow the pipe to withstand external forces and adapt to changes in the surrounding soil, minimizing the risk of damage, leaks, or failure.
Q: How do ductile iron pipes handle ground movement due to tree roots?
Ductile iron pipes possess a robust and enduring nature, rendering them exceptionally resilient against ground movement induced by tree roots. The flexibility of ductile iron enables it to endure the pressure exerted by growing tree roots without fracturing or breaking. This capability is attributed to the material's aptitude for absorbing and dispersing stress, thereby minimizing the impact of ground movement. Furthermore, ductile iron pipes exhibit a sleek inner surface that diminishes the likelihood of tree roots infiltrating. The firmly sealed joints between the pipes likewise prevent root penetration and subsequent harm. In cases where tree roots do manage to infiltrate the soil and make contact with ductile iron pipes, their resistance to corrosion offers an additional advantage. Ductile iron pipes are coated with a protective layer that thwarts the formation of rust and corrosion, guaranteeing their long lifespan and structural integrity. Nevertheless, it is imperative to acknowledge that despite the high resistance of ductile iron pipes to ground movement caused by tree roots, regular inspection and maintenance are still advisable. This facilitates early detection and the necessary execution of repairs if any root infiltration or damage is identified.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords