Low Sulphur Calcined Anthracite Coal as charging coke
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 19.8
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Introduction
Calcined Petroleum Coke comes from delayed coke which extracted from oil refinery. Although Calcined Petroleum Coke contains a little bit higher level of sulfur and nitrogen than pitch coke, the price advantage still makes it widely used during steel-making and founding as a kind of carbon additive/carburant.
Features
Carbon Additive is becoming more and more popular in the steel industry..
The main raw material of our Carbon Additive is Ningxia unique high quality Taixi anthracite, with characteristic of low ash and low sulfur. Carbon additive has two main usage, fuel and additive. When being used as the carbon additive of steel-smelting, and casting, the fixed carbon may achieve above 95%.
Best quality Taixi anthracite as raw materials through high temperature calcined at 1200-1250 ℃ for 24 hours by the DC electric calciner with results in eliminating the moisture and volatile matter from Anthracite efficiently, improving the density and the electric conductivity and strengthening the mechanical strength and anti-oxidation, It has good characteristics with low ash, low resistivity, low carbon and high density. It is the best material for high quality carbon products, it is used as carbon additive in steel industry or fuel.
Specifications
PARAMETER UNIT GUARANTEE VALUE | |||||
F.C.% | 95MIN | 94MIN | 93MIN | 92MIN | 90MIN |
ASH % | 4MAX | 5MAX | 6MAX | 7MAX | 8MAX |
V.M.% | 1 MAX | 1MAX | 1.5MAX | 1.5MAX | 1.5MAX |
SULFUR % | 0.5MAX | 0.5MAX | 0.5MAX | 0.5MAX | 0.5MAX |
MOISTURE % | 0.5MAX | 0.5MAX | 0.5MAX | 0.5MAX | 0.5MAX |
Pictures
FAQ:
1. What is the packing?
In 25kg bag/ In jumbo bags without pallet/ Two jumbo bags with one pallet/ or as customers’ request
2. What is the production capacity?
10 thousand tons per month
3 What is payment term?
Irrevocable LC at sight/ 20% down payment by T/T and 80% against BL copy byT/T/ or to be discussed
4 What is the service?
We will send sample to the third party(CIQ, CCIC, SGS,BV or to be discussed) for checking, and present the test certificate and loading repot of shipment.
- Q: How does carbon impact the structure and function of ecosystems?
- Carbon plays a crucial role in shaping the structure and function of ecosystems. It is a fundamental building block of life and is involved in various biological processes. Carbon is the primary component of organic matter, such as plants, animals, and microorganisms, which form the basis of food webs and provide energy to other organisms. Carbon dioxide (CO2) is also an essential greenhouse gas that regulates the Earth's temperature. Through photosynthesis, plants absorb CO2 from the atmosphere and convert it into organic carbon compounds, releasing oxygen as a byproduct. This process not only fuels the growth of plants but also maintains the balance of atmospheric gases, supporting life on Earth. Additionally, carbon influences the cycling of nutrients within ecosystems. Decomposition of organic matter by decomposers releases carbon back into the environment, enabling its reuse by other organisms. This carbon cycling is vital for nutrient availability and contributes to the overall productivity of ecosystems. However, human activities, such as burning fossil fuels and deforestation, have significantly increased carbon dioxide levels in the atmosphere. This excess carbon disrupts the natural balance, leading to climate change and its associated impacts on ecosystems. Rising temperatures, altered precipitation patterns, and ocean acidification are some of the consequences of increased carbon emissions, which can negatively affect the structure and function of ecosystems, including biodiversity loss, habitat degradation, and disrupted ecological interactions. In summary, carbon is essential for the structure and function of ecosystems. Its involvement in energy transfer, nutrient cycling, and climate regulation highlights its significance in maintaining ecological balance. However, the excessive release of carbon dioxide by human activities has detrimental effects on ecosystems, emphasizing the need for sustainable practices to mitigate these impacts.
- Q: What are the impacts of carbon emissions on the stability of polar ice caps?
- The stability of polar ice caps is significantly affected by carbon emissions, which arise primarily from the burning of fossil fuels. This process releases substantial amounts of carbon dioxide into the atmosphere, a greenhouse gas that traps heat and contributes to global warming and climate change. Consequently, the ice caps in the polar regions, which are extremely sensitive to temperature changes, experience accelerated melting as the Earth's temperature rises due to increased carbon emissions. This leads to a rise in sea levels, with far-reaching consequences for coastal regions globally, including increased flooding, erosion, and the loss of valuable coastal ecosystems. Furthermore, the preservation of the polar ice caps is vital for maintaining the Earth's climate balance. These ice caps play a crucial role in reflecting sunlight back into space, serving as a natural cooling mechanism for the planet. However, as they melt, less sunlight is reflected, resulting in more absorption by the Earth's surface and exacerbating the warming effect. This creates a feedback loop, where the melting of ice caps leads to further warming, causing more ice to melt. The impacts of carbon emissions on polar ice caps extend beyond rising sea levels and climate change. The loss of ice also disrupts the delicate balance of ecosystems in these regions. Polar ice caps provide habitat and sustenance for a diverse range of organisms, including polar bears, seals, and various species of birds. Consequently, the melting of ice disrupts these ecosystems, leading to declines in wildlife populations and potential extinctions. Moreover, the melting of polar ice caps also has repercussions for global ocean currents and weather patterns. The melting ice forms cold, dense water that sinks to the bottom of the ocean and drives crucial oceanic circulation patterns. Changes in these patterns can have far-reaching consequences, such as altering the distribution of marine species, impacting fisheries, and influencing regional climates. To mitigate the impacts of carbon emissions on polar ice caps, it is essential to reduce greenhouse gas emissions and transition to cleaner and renewable energy sources. International initiatives, such as the Paris Agreement, are aimed at limiting global warming and reducing carbon emissions to prevent further melting of the ice caps. Additionally, supporting research and monitoring programs in polar regions can enhance our understanding of these complex systems and facilitate the development of effective conservation strategies.
- Q: How does carbon dioxide affect fuel efficiency?
- Carbon dioxide does not directly affect fuel efficiency. However, the burning of fossil fuels, which releases carbon dioxide, contributes to global warming and climate change. These environmental impacts can lead to stricter regulations on fuel efficiency and encourage the development of more efficient and cleaner energy sources.
- Q: What is carbon nanotechnology?
- Carbon nanotechnology involves the study and manipulation of carbon-based materials at the nanoscale, typically in the form of carbon nanotubes, fullerenes, or graphene. It focuses on harnessing the unique properties and structures of these carbon materials to develop innovative applications in various fields such as electronics, medicine, energy, and materials science.
- Q: What is a carbon free martensite?
- The definition of martensite of Fe based alloy (solid steel and other iron-based alloy) and non ferrous metals and alloys, is guetche variant diffusion free phase transition product of martensitic transformation. It is a product of Fe based alloy, phase transformation of undercooled austenite occurs without diffusion were guetche formation of martensite variant body transformation.
- Q: What are some common compounds of carbon?
- Due to its unique bonding abilities with other carbon atoms and a variety of elements, carbon has the ability to form a wide range of compounds. Carbon dioxide (CO2), methane (CH4), ethanol (C2H5OH), ethene (C2H4), acetic acid (CH3COOH), and glucose (C6H12O6) are some common compounds of carbon. These compounds play crucial roles in various fields such as biology, chemistry, and industry. For instance, carbon dioxide serves as a greenhouse gas, impacting the Earth's climate system significantly. Methane, on the other hand, is a potent greenhouse gas released during natural gas production, contributing to climate change. Ethanol is a widely-used alcohol as a fuel and solvent, while ethene is utilized in plastic production. Acetic acid is a vital component in vinegar, and glucose acts as a primary energy source for living organisms. The vast versatility and importance of carbon are evident through these compounds.
- Q: What are the impacts of carbon emissions on the stability of grasslands?
- The stability of grasslands is significantly affected by carbon emissions. When carbon dioxide (CO2) is released into the atmosphere, it contributes to the greenhouse effect and causes global warming. This rise in temperature has various harmful consequences for grasslands. To begin with, higher temperatures can disrupt the equilibrium of grassland ecosystems. Many grassland species require specific temperatures for their growth and reproduction. As temperatures increase, these species may struggle to adapt, resulting in a decline in their populations. This disruption can negatively impact the overall biodiversity and ecological stability of grasslands. Additionally, global warming can change precipitation patterns, leading to alterations in water availability in grasslands. Reduced rainfall or increased evaporation can create drought conditions, making it challenging for grasses to flourish. This can ultimately cause grasslands to transform into barren areas devoid of plant life, a process known as desertification. Moreover, carbon emissions contribute to the acidification of the oceans, which indirectly affects grasslands. Acidic ocean waters impact marine organisms, including those responsible for generating nutrients that are carried by winds to coastal and inland grasslands. If these nutrient sources decline, grasslands may experience reduced fertility and productivity, ultimately affecting the stability of these ecosystems. Lastly, carbon emissions can worsen the frequency and intensity of wildfires. Grasslands are naturally adapted to periodic fires, which play a vital role in maintaining biodiversity and regulating plant populations. However, the increase in carbon dioxide levels can fuel more severe and frequent wildfires, leading to the destruction of grasslands and making their recovery more challenging. In conclusion, carbon emissions have numerous negative impacts on grassland stability. They disrupt the balance of grassland ecosystems, change precipitation patterns, contribute to ocean acidification, and increase the risk of wildfires. These effects can result in biodiversity loss, desertification, reduced fertility, and overall instability in grassland ecosystems. It is essential to reduce carbon emissions and mitigate the consequences of global warming to ensure the long-term stability and preservation of grasslands.
- Q: How is carbon used in the production of carbon fiber?
- Carbon plays a vital role in the production of carbon fiber. Carbon fiber production involves subjecting a precursor material, typically a polymer like polyacrylonitrile (PAN) or rayon, to a series of heating and chemical treatments. Initially, the precursor material undergoes carbonization, a process where it is heated to a high temperature without oxygen. This carbonization stage includes pyrolysis, which breaks down the molecular structure and eliminates non-carbon elements such as hydrogen, oxygen, and nitrogen. Once carbonization is complete, the resulting material becomes a carbon-rich structure referred to as char. However, it is not yet considered carbon fiber. To convert the char into carbon fibers, further processing steps called stabilization and graphitization are necessary. During stabilization, the char is exposed to heat in the presence of oxygen, resulting in the formation of cross-linked structures. This step enhances the fiber's thermal stability and prevents shrinkage or deformation during subsequent processing. Following stabilization, the material is heated at a higher temperature in an inert atmosphere during graphitization. This process aligns the carbon atoms within the fiber, creating a highly ordered and crystalline structure. Throughout this entire process, carbon serves as the primary constituent of the resulting carbon fiber. Starting from the precursor material containing carbon atoms, the carbonization and graphitization steps remove impurities and rearrange the carbon atoms, producing a durable and lightweight fiber. The resulting carbon fiber possesses exceptional properties, including high strength-to-weight ratio, stiffness, and resistance to heat and chemicals. These attributes make it a valuable material in numerous industries, such as aerospace, automotive, and sporting goods.
- Q: How are carbon nanotubes produced?
- Carbon nanotubes are typically produced through a process called chemical vapor deposition (CVD), where a carbon-containing gas is introduced into a high-temperature reactor. Under controlled conditions, the carbon atoms assemble and form nanotubes on a catalyst surface, such as iron or nickel. Other methods, including arc discharge and laser ablation, can also be used to produce carbon nanotubes.
- Q: The same manufacturer of different types of badminton rackets on the logo, but the two materials in the end what is the difference?
- High elasticity, a little toughness, deformation when playing, high steel of steel, no deformation when playing
Send your message to us
Low Sulphur Calcined Anthracite Coal as charging coke
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 19.8
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches