• Calcined Petroleum Coke as Charging Coke System 1
  • Calcined Petroleum Coke as Charging Coke System 2
Calcined Petroleum Coke as Charging Coke

Calcined Petroleum Coke as Charging Coke

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
19.5
Supply Capability:
1005 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

 Intrduction

Carbon additive to ningxia production of anthracite as raw material, after washing, crushing, high temperature calcination, filter, etc. Craft refined and become.This is after the anthracite calcination generated high carbon content and low volatile component of the new product, is an ideal raw material to make steel.

 Calcined Petroleum Coke comes from delayed coke which extracted from oil refinery. Although Calcined Petroleum Coke contains a little bit higher level of sulfur and nitrogen than pitch coke, the price advantage still makes it widely used during steel-making and founding as a kind of carbon additive/carburant.

 

Features
In the smelting process for reducing agent. Performance: replace the traditional oil carbon additive, decrease the cost of steelmaking. Features: low ash. low sulfur,low phosphorus, high calorific value. High ratio resistance,high mechanical strength,high chemistry activity. It is mainly used for metallurgy reductant inoculants, casting, refractory materials, machinery, electronics and other fields.

 

1) high absorption rate, it can be absorbed up to 90%.Good quality
2) absorbed more quickly than other carbon additive; no residue remains in furnace.
3) low Sulfur, the lowest can reach below 0.20%; low nitrogen, normally below 200ppm (0.02%)

Specifications

Products

CPC

F.C.%

98.5MIN 

98.5MIN 

98MIN 

ASH %

0.8MAX

0.8MAX

1MAX

V.M.%

0.7 MAX

0.7 MAX

1 MAX

SULFUR %

0. 5MAX

0. 7MAX

1MAX

MOISTURE %

0.5MAX

0.5MAX

1MAX

 

Pictures

 

Calcined Petroleum Coke as Charging Coke

Calcined Petroleum Coke as Charging Coke

Calcined Petroleum Coke as Charging Coke

Calcined Petroleum Coke as Charging Coke

 

FAQ:

(1)CPC could be as fuel 

 

Petroleum coke is a material relatively low in cost and high in heat value and carbon content with good chemical stability, making it an efficient and costeffective fuel for producing metal, brick and related products. 

 

(2)CPC could be as Graphite Electrodes

 

Graphite can be produced from lowsulfur needle petroleum coke, which must be heated above 5,432 degrees Fahrenheit. 

 

(3)CPC could be as Anodes

 

Calcined petroleum coke, often low in sulfur and metallic impurities, is used to make anodes for 

 

the smelting industry.Calcined petroleum coke is mixed with coal tar pitch in the production of 

 

anodes. 

 

 

Q: In Japanese, what's the difference between adding "carbon" and "sauce" after the name?
Because this is similar to children's pronunciation is very cute, so sometimes good relationship between young people will use "carbon" pronunciation to install cute. So God, many animation or dramas in long sometimes "XX carbon ~" said.
Q: What is the carbon content of different types of soil?
Various factors, such as climate, vegetation, and land management practices, can greatly influence the carbon content of different types of soil. Generally, soils with higher levels of organic matter exhibit higher levels of carbon. For instance, peat soils boast the highest carbon content among all soil types, ranging from 30% to 60%. These soils form in wetland areas where the decomposition of organic matter is hindered by water saturation, resulting in the accumulation of substantial amounts of carbon over time. Forest soils also tend to possess relatively high carbon content, typically falling between 1% and 10%. Forests continually supply organic matter through litterfall, contributing to the build-up of carbon in the soil. In contrast, agricultural soils generally exhibit lower carbon content compared to peat or forest soils. Factors such as crop rotation, organic amendments, and tillage practices influence the carbon content of agricultural soils. Consequently, the carbon content in these soils can range from less than 1% to around 6%. Grassland soils may have carbon contents similar to agricultural soils, depending on management practices. However, in undisturbed grasslands with high plant productivity, the carbon content can be relatively higher, ranging from 2% to 8%. In arid and desert regions, soils tend to display lower carbon content due to limited vegetation and slower rates of organic matter decomposition. Typically, the carbon content in these soils is less than 1%. It is important to acknowledge that these ranges are generalizations, and the carbon content of soil can vary both within and between soil types. Additionally, alterations in land use, such as deforestation or the conversion of grasslands to agriculture, can have a significant impact on soil carbon content.
Q: What are the potential uses of carbon nanomaterials in medicine?
Carbon nanomaterials have immense potential in medicine due to their unique properties. They can be used for targeted drug delivery, imaging, tissue engineering, and diagnostics. Carbon nanotubes, for example, can transport drugs directly to cancer cells, reducing side effects. Additionally, carbon nanomaterials can provide high-resolution imaging of tissues and organs, aiding in early disease detection. Furthermore, they can be used to create scaffolds for tissue regeneration, promoting the growth of new cells and tissues. Overall, carbon nanomaterials hold great promise for revolutionizing medicine and improving patient outcomes.
Q: How does carbon occur in nature?
Carbon occurs in nature in various forms and is one of the most abundant elements on Earth. It is found in the atmosphere, in the Earth's crust, and in living organisms. In the atmosphere, carbon exists primarily as carbon dioxide (CO2), which is produced through natural processes such as respiration, volcanic activity, and the decay of organic matter. This CO2 is then absorbed by plants during photosynthesis to produce energy and release oxygen. Carbon is also present in other greenhouse gases like methane (CH4), which is produced by natural processes such as the decomposition of organic matter in wetlands and the digestive processes of certain animals. In the Earth's crust, carbon is found in various minerals such as limestone, dolomite, and graphite. These minerals are formed through the deposition and accumulation of marine organisms, such as shells and skeletons of marine organisms, over millions of years. Carbon is also a key component of fossil fuels, including coal, oil, and natural gas, which are formed from the remains of ancient plants and animals buried and subjected to high pressure and temperature over time. Furthermore, carbon is an essential element for all living organisms and is the basis of organic chemistry. It is the key component of all organic matter, including carbohydrates, proteins, lipids, and nucleic acids, which form the building blocks of life. Carbon cycles through various biological processes, such as photosynthesis, respiration, and decomposition, allowing it to be continually recycled within ecosystems. Overall, carbon occurs naturally in the environment in different forms and plays a crucial role in the Earth's climate system, geological processes, and the sustenance of life.
Q: What's a carbon cloth to do as a fish pole?
This is difficult, usually with a lathe like tool, by heating in the brush, layer by layer roll up, and finally cut off paint, baking
Q: What are some common compounds of carbon?
Carbon forms a wide range of compounds due to its unique ability to bond with other carbon atoms and a variety of other elements. Some common compounds of carbon include carbon dioxide (CO2), methane (CH4), ethanol (C2H5OH), ethene (C2H4), acetic acid (CH3COOH), and glucose (C6H12O6). These compounds are essential in various fields such as biology, chemistry, and industry. For example, carbon dioxide is a greenhouse gas that plays a crucial role in the Earth's climate system, methane is a potent greenhouse gas released during natural gas production and contributes to climate change, ethanol is a common alcohol used as a fuel and solvent, ethene is used to produce plastics, acetic acid is a key component in vinegar, and glucose is a primary source of energy for living organisms. These compounds highlight the versatility and importance of carbon in the world around us.
Q: What are the impacts of carbon emissions on biodiversity?
Carbon emissions have significant impacts on biodiversity. Increased levels of carbon dioxide in the atmosphere contribute to climate change, which disrupts ecosystems and threatens biodiversity. Rising temperatures, altered precipitation patterns, and more frequent extreme weather events can lead to habitat loss, shifts in species distribution, and reduced reproductive success. Moreover, ocean acidification resulting from carbon emissions poses a threat to marine ecosystems, affecting coral reefs and other vulnerable species. Overall, carbon emissions have detrimental effects on biodiversity, potentially leading to the extinction of numerous species and the destabilization of ecosystems.
Q: How is carbon used in the production of pigments?
Carbon is used in the production of pigments as a black colorant or as a base for creating various shades of gray. Carbon black, which is made by burning or decomposing organic materials, is commonly used as a pigment due to its intense black color. Additionally, carbon can be used to create different pigments by combining it with other elements or compounds, resulting in a wide range of colors for various applications in industries such as paints, inks, and plastics.
Q: How does carbon dioxide affect the pH of seawater?
The pH of seawater is affected by carbon dioxide, resulting in increased acidity. Seawater undergoes a reaction with carbon dioxide, leading to the formation of carbonic acid. This carbonic acid subsequently breaks down into hydrogen ions (H+) and bicarbonate ions (HCO3-), thereby increasing the concentration of hydrogen ions in the water. The rise in hydrogen ions causes a decline in pH, resulting in more acidic seawater. This phenomenon is known as ocean acidification. Marine organisms, including coral reefs, shellfish, and other species that rely on calcium carbonate for their shells or skeletons, can be negatively impacted by ocean acidification. Additionally, the balance of marine ecosystems can be disrupted, and various ecological processes in the ocean can be affected.
Q: What are the effects of carbon emissions on the stability of river systems?
Carbon emissions have significant effects on the stability of river systems. Increased carbon emissions contribute to global warming, leading to rising temperatures and altered precipitation patterns. These changes can result in more frequent and intense extreme weather events, including floods and droughts, which disrupt the natural flow of rivers. Carbon emissions also contribute to ocean acidification, which affects freshwater sources through underground aquifers and alters the pH levels of rivers, impacting the stability of ecosystems. Additionally, carbon emissions can lead to the formation of harmful algal blooms, depleting oxygen levels in rivers and harming aquatic life. Overall, carbon emissions have profound implications for the stability and functioning of river systems.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords