• Iron bar from China steel mill 6-50 mm for building System 1
  • Iron bar from China steel mill 6-50 mm for building System 2
Iron bar from China steel mill 6-50 mm for building

Iron bar from China steel mill 6-50 mm for building

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
1000 m.t.
Supply Capability:
19863 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Standard:
AISI
Technique:
Hot Rolled
Shape:
Round
Surface Treatment:
Dry
Steel Grade:
HRB400
Certification:
ISO,CE
Thickness:
6-50mm
Length:
6-12mm
Net Weight:
1-3mt

Common rebar is made of unfinished steel, making it susceptible to rusting. As rust takes up 

greater volume than the iron or steel from which it was formed, it causes severe internal pressure 

on the surrounding concrete, leading to cracking, spalling, and ultimately, structural failure. This is 

a particular problem where the concrete is exposed to salt water, as in bridges built in areas where 

salt is applied to roadways in winter, or in marine applications. Epoxy-coated rebar or stainless steel 

rebar may be employed in these situations at greater initial expense, but significantly lower expense 

over the service life of the project. Fiber-reinforced polymer rebar is now also being used in high-corrosion 

environments

Our Advantage

                              High quality steel products from 1 class mills in China

                              Reasonable price

                              Professionalism of the products

                              On-time delivery

                              Complete documents and certificates

                              Sincere service to meet our clients' requirements


 

Product Description :

Chemical composition (%):

Steel

C

Si

Mn

P

S

Ceq

HRB335

 

0.25

 

0.80

 

1.60

 

0.045

 

0.045

0.52

HRB400

0.54

HRB500

0.55

Mechanical properties

Steel

Rel/

MPa

Rm/

MPa

A/

%

Agt/

%

HRB335

335

455

17

 

7.5

HRB400

400

540

16

HRB500

500

630

15

Package:

Standard export packing or as customer's request

Application:

Construction, building, bridge, road. ect

Payment terms

1).100% irrevocable L/C at sight.
2).30% T/T prepaid and the balance against the copy of B/L.
3).30% T/T prepaid and the balance against L/C

Delivery time

15-30 days after receipt of L/C or deposit by T/T













 

Features
1
Pure steel quality, stable chemical contents, small tolerance.
2
Constant Quality, good drawing performance.
3
High dimension accuracy degree, accuracy degree of Level C up to 80%, smooth surface, less scale, easy to be pickled.
4
Automatic bundling with 4 lines by Machine in tidy and good looks
5
Big high quality percentage, small coil percentage, and heavy coil weight for Hard Coil.
6
High sorbitizing percentage.

Iron bar from China steel mill 6-50 mm for building

Iron bar from China steel mill 6-50 mm for building

 

Packing:

In bundles, each bundle weight 3.5 tons. Load by container or by bulk verssel.

Iron bar from China steel mill 6-50 mm for building

Iron bar from China steel mill 6-50 mm for building

 

Our service

(1) We cooperate with famous factories with advanced equipment and well trained workers.

(2) We can provide factory price with trading company service.

(3) We continuously work on the improvement of our processes, guaranteeing consistently high standards 

of quality to keep none compensation.

(4) We guarantee 24 hours response and 48 hours solution providing service.

(5) We accept small order quantity before formal cooperation.

(6) We deliver the agreed quality at the agreed time, reacting to changes in customer wishes in a flexible way.

(7) Due to our volume and selling power, we have excellent freight rates with shipping lines.

(8) We strive to always be fair and honest in our dealings with customers.

(9) We strive to work together with customers to achieve much more than we can achieve alone.

(10) Through our passion and commitment we aim to be a market leader in all our key markets. To maintain 

our position as market leader we must continue to add value in all that we do.

FAQ:

1.Q: What's your MOQ(minimum order quantity)?

A: One full container, mixed acceptable .

2. Q: What's your packing methods?

A: Packed in bundle or bulk ..

3. Q: How can I buy  CNBM products in my country?

A:Please send us an inquiry or email ,we will reply to you if there is distributor in your country

4. Q: Can we visit your factory?

 A: Warmly welcome. Once we have your schedule, we will arrange the professional sales team to follow up your case.

5. Q: How long does it take to get the product if i place an order?

 A:With the process of your requirements,we will pack and deliver in 3-7 days. If it is by sea shipment,it will take 15-45 days depending on different locations

 


Q: What are the different methods of reinforcing concrete structures using steel rebars?
There are several methods of reinforcing concrete structures using steel rebars. 1. Traditional Reinforcement: This method involves placing steel rebars in the formwork before pouring concrete. The rebars are positioned in a predetermined pattern and secured with wire or tie rods to ensure they stay in place during the concrete placement. This method is commonly used for reinforcing columns, beams, and slabs. 2. Pre-stressed Reinforcement: In this method, high-strength steel rebars are pre-stressed before being placed in the concrete structure. This is usually achieved by stretching the rebars and then anchoring them to resist the tensile forces that will be exerted on the structure. Pre-stressed reinforcement is commonly used in bridges and large-span structures where high strength and durability are required. 3. Post-tensioning: Post-tensioning is a technique used to reinforce concrete structures after the concrete has hardened. It involves inserting steel tendons into pre-determined ducts or sleeves within the concrete and then applying tension to the tendons using hydraulic jacks. This process helps to counteract the tensile forces and increase the overall strength and load-carrying capacity of the structure. 4. Fiber Reinforcement: Instead of using traditional steel rebars, fiber reinforcement involves adding small fibers made of materials like glass, polypropylene, or steel to the concrete mix. These fibers help to distribute and control cracks that may occur due to shrinkage or thermal expansion. Fiber reinforcement is often used in applications such as industrial flooring, shotcrete, and precast concrete products. 5. Reinforced Concrete Masonry: In this method, steel rebars are inserted into the mortar joints of concrete masonry units (CMUs) to increase the strength and stability of the structure. The rebars are placed vertically and horizontally at specific intervals and then grouted to ensure a solid bond between the rebars and the CMUs. Overall, these different methods of reinforcing concrete structures using steel rebars provide various options for engineers and designers to enhance the strength, durability, and load-carrying capacity of concrete structures, depending on the specific requirements of the project.
Q: Are steel rebars prone to rusting?
Yes, steel rebars are prone to rusting. Rebars are made of carbon steel, which contains iron as its primary component. When exposed to moisture and oxygen, the iron in steel rebars undergoes a chemical reaction called oxidation, resulting in the formation of iron oxide or rust. This process can be accelerated in environments with high humidity, coastal areas with saltwater exposure, or when the rebars come into contact with water or other corrosive substances. The rusting of steel rebars can weaken their structural integrity and compromise the strength and durability of concrete structures. Therefore, it is essential to protect rebars from rust by applying anti-corrosion coatings or using stainless steel rebars in areas prone to rusting. Regular maintenance and inspection can also help identify and address any rust-related issues in a timely manner.
Q: How do steel rebars affect the constructability of a project?
Steel rebars play a crucial role in the constructability of a project as they enhance the structural integrity, strength, and durability of concrete structures. By providing tensile strength to concrete, rebars help prevent cracking and ensure the overall stability of the project. Additionally, rebars facilitate the ease of construction by allowing for efficient reinforcement placement and alignment. Overall, steel rebars significantly contribute to the constructability and long-term performance of a project.
Q: What are the main properties of steel rebars?
Steel rebars, also referred to as reinforcing bars, play a vital role in reinforced concrete structures due to their numerous advantageous characteristics. Firstly, steel rebars possess a high tensile strength, which enables them to withstand substantial pulling forces and effectively reinforce concrete to prevent cracking and structural failure. Secondly, steel rebars exhibit exceptional ductility, meaning they can deform under stress without fracturing. This flexibility allows them to absorb energy during seismic events or extreme loads, enhancing the overall performance and resilience of the reinforced concrete. Moreover, steel rebars are manufactured with a protective layer, such as epoxy or galvanized coating, to ensure corrosion resistance. This property is crucial as exposure to moisture, chloride ions, and other corrosive elements can significantly weaken the rebars and compromise the structural integrity. In addition, steel rebars can be easily welded together, facilitating efficient and effective construction. This feature enables the rebars to be connected seamlessly, forming a continuous and robust reinforcement network that enhances the overall strength and stability of the concrete structure. Furthermore, steel rebars possess thermal compatibility with concrete, meaning they have similar expansion and contraction properties. This characteristic minimizes the risk of cracking or structural damage caused by temperature changes, ensuring the long-term durability and stability of reinforced concrete structures. Lastly, steel rebars are widely available and relatively cost-effective compared to alternative reinforcing materials. This affordability, combined with their exceptional mechanical properties, makes them a popular choice for structural reinforcement in various construction projects. In conclusion, steel rebars offer high tensile strength, ductility, corrosion resistance, weldability, thermal compatibility, and cost-effectiveness. These properties are indispensable for providing structural strength and durability to reinforced concrete structures.
Q: Are steel rebars resistant to chemicals?
Steel rebars are typically resistant to chemicals. Steel is renowned for its strength and durability, enabling it to endure exposure to various chemicals without significant deterioration. However, the level of resistance may vary based on the specific chemical, concentration, and duration of exposure. Generally, steel rebars exhibit high resistance to commonly found construction materials and environments, including water, concrete additives, and standard cleaning agents. They also withstand acids, alkalis, and organic solvents. Nevertheless, aggressive chemicals like strong acids or oxidizing agents can lead to corrosion or damage over time. Therefore, it is crucial to consider the chemical environment when choosing and utilizing steel rebars, and implement appropriate safeguards if necessary, such as protective coatings or corrosion inhibitors.
Q: How do steel rebars affect the overall noise insulation of a structure?
Steel rebars have a minimal impact on the overall noise insulation of a structure. This is because noise insulation primarily depends on the density and thickness of the materials used in the construction of walls, floors, and ceilings. Steel rebars, being used to reinforce concrete structures, do not significantly contribute to the sound insulation properties of a building. The primary function of steel rebars is to provide strength and stability to the concrete, ensuring its structural integrity. They are typically embedded within the concrete, resulting in their presence throughout the building's framework. However, the steel rebars themselves do not possess any sound-absorbing or sound-blocking characteristics. To enhance the noise insulation of a structure, other sound insulation materials such as insulation boards, acoustic panels, or soundproofing materials need to be incorporated into the building design. These materials are specifically designed to absorb or block sound waves, reducing the transmission of noise from one area to another. While steel rebars may not directly contribute to noise insulation, they indirectly play a role in maintaining the overall structural integrity of a building. A well-constructed and sturdy structure can help minimize vibrations and sound transmission caused by external noise sources. Therefore, while steel rebars themselves do not significantly affect noise insulation, their presence indirectly contributes to a more solid and stable building, which can help reduce structural vibrations and unwanted noise.
Q: Are there any disadvantages of using steel rebars in construction?
Yes, there are a few disadvantages of using steel rebars in construction. Firstly, steel rebars are susceptible to corrosion when exposed to moisture and chemicals, which can weaken their structural integrity over time. Additionally, steel rebars are relatively heavy, making transportation and handling more challenging and costly. Lastly, steel rebars conduct heat, which can lead to thermal expansion and contraction issues in extreme temperatures, potentially causing cracks or structural damage in the concrete.
Q: How do steel rebars impact the durability of concrete structures?
The durability of concrete structures is significantly influenced by steel rebars. Adding steel rebars improves the strength and overall performance of concrete, making it more resistant to various external forces and extending its lifespan. To begin with, steel rebars offer structural reinforcement to concrete structures. Concrete has relatively low tensile strength, making it susceptible to cracking and failure under tensile stresses. By incorporating steel rebars into the concrete, these stresses are effectively distributed throughout the structure, preventing the formation of cracks and enhancing its load-bearing capacity. This reinforcement ensures that the concrete structure can withstand the forces it experiences, whether from gravity, wind, earthquakes, or other external factors. Additionally, steel rebars play a vital role in corrosion prevention in concrete structures. Concrete is highly alkaline, creating a protective environment for embedded steel. However, factors like moisture exposure, chloride ions, and carbonation can break down this protective layer over time, leading to steel corrosion. Corrosion weakens the rebars and causes the surrounding concrete to crack and spall, compromising the structure's durability. By using steel rebars with appropriate coatings or stainless steel, the risk of corrosion is significantly reduced, enhancing the structure's longevity and durability. Furthermore, steel rebars contribute to the durability of concrete structures by providing dimensional stability. Concrete tends to shrink and expand due to temperature and moisture changes, which can result in cracking and deformation. Incorporating steel rebars helps minimize these movements by providing restraint and stabilizing the structure, preventing excessive cracking and maintaining its integrity over time. In conclusion, steel rebars play a crucial role in enhancing the durability of concrete structures. They provide structural reinforcement, prevent corrosion, and ensure dimensional stability. By incorporating steel rebars into concrete, structures become stronger, more resistant to external forces, and have an extended lifespan. This ultimately leads to safer and more durable buildings and infrastructure.
Q: What is the role of steel rebars in minimizing cracking due to shrinkage?
The role of steel rebars in minimizing cracking due to shrinkage is to provide reinforcement and strength to concrete structures. By placing steel rebars within the concrete, they act as a framework that helps distribute the tensile forces caused by shrinkage. This prevents the concrete from cracking and ensures the overall stability and durability of the structure.
Q: Can steel rebars be used in retaining walls and dams?
Yes, steel rebars can be used in retaining walls and dams. Steel rebars provide reinforcement and strength to these structures, helping to resist lateral forces and prevent cracking or failure. The use of steel rebars ensures the structural integrity and long-term stability of retaining walls and dams.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords